Öz

Bu araştırmanın amacı, Bağlam Temelli Öğrenme (BTÖ) uygulamalarının kalıcı öğrenme süreci üzerindeki etkisinin Çoklu Bütüncül Yaklaşım (ÇBY) sürecine göre incelenmesidir. ÇBY, i) Ön bütüncül bilgi: Meta-analiz ve meta-tematik analiz, ii) Son bütüncül bilgi: Deney ve kontrol grubunda ön test, son test ve kalıcılık testi uygulamasının deneysel tasarımı ve iii) Bütüncül bilgi: İlk iki aşamanın analizlerinden elde edilen sonuçların birleştirilmesi aşamaları ile BTÖ uygulamalarının kalıcılık üzerine etkisi konusunda kapsamlı bir değerlendirme sürecidir. Çalışmada metodolojik süreç ÇBY adımlarına göre takip edilmiştir. BTÖ uygulamalarının kalıcı öğrenme üzerine etkisi konusunda doküman analizine dayalı olarak yapılan literatür taraması ve BTÖ uygulamalarına göre yapılan faaliyetler, BTÖ’nün akademik başarı, kalıcılık, derse yönelik ilgi ve demokratik beceriler kazanma gibi çeşitli konularda öğrenme süreci üzerinde etkili ve anlamlı bir yaklaşım olduğunu göstermiştir. BTÖ’nün kalıcılık üzerine etkisi konusunda ortaya çıkan bütüncül sonuçlar, sosyal bilgiler dersinde etkili bir yöntem olarak büyüme potansiyeline sahip bir yaklaşımı olduğunu göstermekte ve sosyal bilgiler alanında daha yaygın bir şekilde faydalanılmasını teşvik etmektedir.

Anahtar Kelimeler: Bağlam temelli öğrenme, Çoklu bütüncül yaklaşım, Meta-analiz, Meta-tematik analiz, Sosyal bilgiler, Öğrenmenin kalıcılığı

Kaynakça

  1. Notes: Studies included in the meta-analysis are indicated with one asterisk (*), while citations to studies included in both the meta-analysis and meta-thematic analysis are indicated with two asterisks (**). Those without an asterisk are the sources used in the study.
  2. Acar, B., & Yaman, M. (2011). The effect of context-based learning on students' interest and knowledge levels. Hacettepe University Journal of Faculty of Education, 40(40), 1-10.
  3. *Ahmad, S. S. (2016). The impact of context-based instructional approach on students academic achievement and retention of hydrocarbon concepts among science secondary students in Kano State, Nigeria. Proceedings of the 2nd International Conference on Science, Technology and Social Science (ICSESS2016). University of Technology Malaysia.
  4. *Akdaş, E. (2014). The effect of using the life-based learning model in the human and environment unit of primary school seventh-grade science and technology course on academic achievement, attitude, and retention (Unpublished master's thesis). Gazi University, Ankara.
  5. *Akın Yanmaz, E. (2021). The effect of guidance materials developed according to context-based learning approach on the conceptual understandings of middle school 7th-grade students: "mirrors and absorption of light" example (Unpublished master's thesis). Giresun University, Giresun.
  6. **Akpınar, M. (2012). The effect of conceptual change texts on student access in physics education with context-based approach (Unpublished doctoral dissertation). Gazi University, Ankara.
  7. Almeida, F. (2018). Strategies to perform a mixed methods study. European Journal of Education Studies, 5(1), 137-151.
  8. Anıl, Ö., & Batdı, V. (2022). Use of augmented reality in science education: A mixed-methods research with the multi-complementary approach. Education and Information Technologies, 28(1), 1-39. doi:10.1007/s10639-022-11398-6
  9. *Arıkan, İ. (2021). The effect of context-based learning approach in social studies course on students' academic success, financial literacy skills and learning retention (Unpublished doctoral dissertation). Fırat University, Elazığ.
  10. *Arıkan, İ., & Çakmak, Z. (2023). The effect of context-based learning approach on students' academic achievement, financial literacy skills and retention of learning in social studies course. Yüzüncü Yıl University Journal of Institute of Social Sciences, 59, 153-183. doi:10.53568/yyusbed.1189436
  11. *Badeli, Ö. (2017). Investigation of the effect of context-based teaching method supported by 5e model on students' conceptual understanding, attitudes towards science, and retention of knowledge in the teaching of primary school 4th grade "pure matter and mixture" subject (Unpublished master's thesis). Gaziantep University, Gaziantep.
  12. ** Baran, M. (2013). Yaşam temelli probleme dayalı öğretim yönteminin termodinamik konusunun öğretimine etkisi (Unpublished doctoral dissertation). Atatürk University, Erzurum.
  13. Baran, M., & Sözbilir, M. (2018). An application of context-and problem-based learning (C-PBL) into teaching thermodynamics. Research in Science Education, 48, 663-689. doi:10.1007/s11165-016-9583-1
  14. Barker, V., & Millar, R. (1999). Students reasoning about chemical reactions: What changes occur during a context-based post-16 chemistry course?. International Journal of Science Education, 21(6), 645-665.
  15. Batdı, V. (2016). Metodolojik çoğulculukta yeni bir yönelim: Çoklu bütüncül yaklaşım. Dumlupınar Üniversitesi Sosyal Bilimler Dergisi, 50, 133-147.
  16. Batdı, V. (2019). Meta-tematik analiz. In Meta-tematik analiz: Örnek uygulamalar (pp. 10-76). Ankara: Anı Publication.
  17. Batdı, V., Doğan, Y., & Talan, T. (2021). Effectiveness of online learning: A multi-complementary approach research with responses from the COVID-19 pandemic period. Interactive Learning Environments, 31(7), 4113-4146. doi:10.1080/10494820.2021.1954035
  18. Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347-370.
  19. Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. New York: John Wiley & Sons Ltd.
  20. Borenstein, M., Hedges, L. V., Higgins, J. P. T. ve Rothstein, H. R. (2013). Introduction to meta-analysis (S. Dinçer, Trans.). Ankara: Anı Publication.
  21. Broman, K., Bernholt, S., & Parchmann, I. (2018) . Using model-based scaffolds to support students in solving context-based chemistry problems. International Journal of Science Education, 40(10), 1176-1197. doi:10.1080/09500693.2018.1470350
  22. Brooks, G. P., & Johanson, G. A. (2003). TAP: Test analysis program. Applied Psychological Measurement, 27(4), 303-304.
  23. Bulte, A. M., Westbroek, H. B., de Jong, O., & Pilot, A. (2006). A research approach to designing chemistry education using authentic practices as contexts. International Journal of Science Education, 28(9), 1063-1086. doi:10.1080/09500690600702520
  24. Büyüköztürk, Ş. (2018). Sosyal bilimler için veri analizi el kitabı. Ankara: Pegem Akademi Yayıncılık.
  25. Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, E. A., Karadeniz, Ş., & Demirel, F. (2014). Scientific research methods (18th ed.). Ankara: Pegem Akademi.
  26. Cabbar, B. G., & Şenel, H. (2020). Content analysis of biology education research using context-based approaches: The case of Turkey. Journal of Educational Problems, 6(1), 203-218. doi:10.5296/jei.v6i1.16920
  27. Caffarella, R. S., & Merriam, S. B. (1999) . Perspectives on adult learning: Framing our research. 40th Annual Adult Education Research Conference Proceedings, Northern Illinois University, DeKalb, IL.
  28. Ceylan, D. (2017). The effect of context-based teaching approach applied with 5E model in geography education on academic success (Unpublished doctoral dissertation). Gazi University, Ankara.
  29. Choi, H. J., & Johnson, S. D. (2005). The effect of context-based video instruction on learning and motivation in online courses. The American Journal of Distance Education, 19(4), 215-227.
  30. Coe, R. (2002). It’s the effect size, stupid. British Educational Research Association Annual Conference, UK.
  31. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46.
  32. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York, NY: Laurence Erlbaum Associates.
  33. Creswell, J. W. (2015). A concise introduction to mixed methods research. Thousand Oaks: Sage.
  34. Creswell, J. W. (2017). Karma yöntem araştırmalarına giriş (M. Sözbilir, Trans.). Ankara: Pegem Akademi.
  35. Creswell, J. W., Fetters, M. D., & Ivankova, N. V. (2004) . Designing a mixed methods study in primary care. The Annals of Family Medicine, 2(1), 7-12. doi:10.1370/AFM.104
  36. **Çelik, B., & Öner Armağan, F. (2021). Determination of pre-service science teachers' views on context-based learning practices. Journal of Social and Humanities Sciences Research, 8(67), 748-766. doi:10.26450/jshsr.2313
  37. De Jong, O. (2008). Context-based chemical education: how to improve it?. Chemical Education International, 8(1), 1-7.
  38. Delgado-Rodriguez, M. (2001). Glossary on meta-analysis. Journal of Epidemiology & Community Health, 55(8), 534-536.
  39. Demir, S., & Başol, G. (2014). Effectiveness of Computer-Assisted Mathematics Education (CAME) over academic achievement: A meta-analysis study. Educational Sciences: Theory and Practice, 14(5), 2026-2035. doi:10.12738/estp.2014.5.2311
  40. Derman, İ., & Senemoğlu, N. (2021). Yedinci sınıf öğrencilerinin fen bilimleri dersini yaşamla ilişkilendirme düzeyleri. Eğitim ve Bilim, 46(206), 107-129. doi:10.15390/EB.2020.9178
  41. **Deveci, İ., & Karteri, İ. (2022). Context-based learning supported by environmental measurement devices in science teacher education: A mixed method research. Journal of Biological Education, 56(5), 487-512. doi:10.1080/00219266.2020.1821083
  42. Dori, Y. J., Avargil, S., Kohen, Z., & Saar, L. (2018). Context-based learning and metacognitive prompts for enhancing scientific text comprehension. International Journal of Science Education, 40(10), 1198-1220. doi:10.1080/09500693.2018.1470351
  43. **Duruk, Ü. (2017). The effect of context-based direct reflective nature of science teaching approach based on metacognitive strategies on pre-service science teachers' conceptions of the nature of science and the permanence of these conceptions (Unpublished doctoral dissertation). Adıyaman University, Adıyaman.
  44. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455-463. doi:10.1111/j.0006-341x.2000.00455.x
  45. **Elmas, R. (2012). Examination of the effect of context-based approach on 9th-grade students' understanding of the subject of cleaning materials and their attitudes towards the environment (Unpublished doctoral dissertation). Middle East Technical University, Ankara.
  46. Ergün, E. C. (2018). 4. sınıf basit elektrik devreleri konusunun öğretiminde bağlam temelli öğretim yönteminin öğrencilerin fenene yönelik tutumlarına, başarılarına ve bilgilerinin kalıcılığına etkisi (Unpublished master's thesis). Necmettin Erbakan University, Konya.
  47. **Ermiş, Y. (2019). The effect of life-based design education on students' application skills (Unpublished doctoral dissertation). Necmettin Erbakan University, Konya.
  48. Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33(3), 613-619. doi:10.1177/001316447303300309
  49. Genç, M. (2019). Context-based practices in science course books [Special issue]. Turkish Online Journal of Educational Technology, 1, 58-64.
  50. Gilbert, J. K. (2006). On the nature of "context" in chemical education. International Journal of Science Education, 28(9), 957-976. doi:10.1080/09500690600702470
  51. Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5(10), 3-8. doi:10.2307/1174772
  52. Glynn, S., & Koballa, T. R. (2005). The contextual teaching and learning instructional approach. In R. E. Yager (Ed.), Exemplary science: Best practices in professional development (pp. 75-84). Arlington, VA: National Science Teachers Association Press.
  53. Goodrum, D., Druhan, A., & Abbs, J. (2012). The status and quality of year 11 and 12 science in Australian schools. Canberra: Australian Academy of Science.
  54. **Görmüş, G. (2021). The effect of the activities prepared according to the REACT strategy in the context-based learning approach in the teaching of the circulatory system subject on the learning products of the students (Unpublished master's thesis). Ondokuz Mayıs University, Samsun.
  55. Greenland, S., & O'rourke, K. (2001). On the bias produced by quality scores in meta‐analysis, and a hierarchical view of proposed solutions. Biostatistics, 2(4), 463-471.
  56. *Güneş Koç, R. S. (2013). The effect of the context-based approach supported with the 5E model on seventh-grade students' achievements in the light unit, retention of knowledge, and attitudes towards science courses (Unpublished doctoral dissertation). Gazi University, Ankara.
  57. **Gürsoy Köroğlu, N. (2011). Yaşam temelli öğrenme yaklaşıminin, öğretmen adaylarında çevreye yönelik ilgi, tutum ve çevre bilinçli tüketici davranışlarının incelenmesi (Unpublished doctoral dissertation). Gazi University, Ankara.
  58. Habig, S., Blankenburg, J., van Vorst, H., Fechner, S., Parchmann, I., & Sumfleth, E. (2018). Context characteristics and their effects on students' situational interest in chemistry. International Journal of Science Education, 40(10), 1154-1175. doi:10.1080/09500693.2018.1470349
  59. Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational Statistics, 6(2), 107-128. doi:10.2307/1164588
  60. **Hırça, N. (2012). The effects of hands on activities depend on context-based learning approach on understanding of physics and attitudes. Mustafa Kemal University Journal of Institute of Social Sciences, 9(17), 313-325.
  61. Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539-1558. doi:10.1002/sim.1186
  62. Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. doi:10.1136/bmj.327.7414.557
  63. Ivankova, N. V., & Plano Clark, V. L. (2018). Teaching mixed methods research: Using a socio-ecological framework as a pedagogical approach for addressing the complexity of the field. International Journal of Social Research Methodology, 21(4), 409-424. doi:10.1080/13645579.2018.1427604
  64. İnci, T. (2019). The effect of context-based learning environment perception, course interest, course participation and academic motivation interaction on middle school students' science achievement (Unpublished doctoral dissertation). Eskişehir Osmangazi University, Eskişehir.
  65. Jackson, D., & Turner, R. (2017). Power analysis for random-effects meta-analysis. Research Synthesis Methods, 8(3), 290-302. doi:10.1002/jrsm.1240
  66. Jenkins, E. W., & Nelson, N. W. (2005). Important but not for me: Students' attitudes towards secondary school science in England. Research in Science & Technological Education, 23(1), 41-57. doi:10.1080/02635140500068435
  67. Johnson, R. B., & Onwuegbuzie, A. J. (2004) . Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33(7), 14-26. doi:10.3102/0013189X033007014
  68. Kara, F. (2016). 5. The effect of context-based learning used in the 5th grade change of matter unit on students' levels of associating their knowledge with daily life, academic achievement, and attitudes towards science (Unpublished doctoral dissertation). Ondokuz Mayıs University, Samsun.
  69. **Kara, F., & Çelikler, D. (2019). Middle school 5th grade students' views on context-based learning practices. Mediterranean Journal of Educational Research, 13(28), 198-213.
  70. **Kazeni, M. M. M. (2012). Comparative effectiveness of context-based and traditional teaching approaches in enhancing learner performance in life sciences (Doctoral dissertation). University of Pretoria, Lynnwood Rd, Hatfield, Pretoria.
  71. **Kazeni, M., & Onwu, G. (2013). Comparative effectiveness of context-based and traditional approaches in teaching genetics: Student views and achievement. African Journal of Research in Mathematics, Science and Technology Education, 17(1-2), 50-62.
  72. Kehoe, J. (1994). Basic item analysis for multiple-choice tests. Practical Assessment, Research, and Evaluation, 4(1). doi:10.7275/07zg-h235
  73. **King, D. T. (2009a). Teaching and learning in a context-based chemistry classroom (Doctoral dissertation). Queensland University of Technology, Avustralya.
  74. King, D. T. (2009b). Context-based chemistry: Creating opportunities for fluid transitions between concepts and context. Teaching Science, 55(4), 13-20.
  75. King, D. T. (2012). New perspectives on context-based chemistry education: Using a dialectical sociocultural approach to view teaching and learning. Studies in Science Education, 48(1), 51-87. doi:10.1080/03057267.2012.655037
  76. King, D., & Henderson, S. (2018). Context-based learning in the middle years: Achieving resonance between the real-world field and environmental science concepts. International Journal of Science Education, 40(10), 1221-1238. doi:10.1080/09500693.2018.1470352
  77. **Korsacılar, S. (2014). 9th-grade physics nature of physics unit in the teaching of basic concepts in the method of life-based teaching and learning stations (Unpublished master's thesis). Dokuz Eylül University, İzmir.
  78. Kortland, J. (2007). Context-based science curricula: Exploring the didactical friction between context and science content. Malmö: ESERA.
  79. **Köroğlu Ergel, B. G. (2021). The effect of the course material prepared computer-aided based on the context-based learning approach on student success and attitude on the subject of force and motion (Unpublished master's thesis). Trabzon University, Trabzon.
  80. **Kutu, H., & Sözbilir, M. (2011). Yaşam temelli ARCS öğretim modeliyle 9. sınıf kimya dersi “Hayatımızda Kimya” ünitesinin öğretimi. Ondokuz Mayis University Journal of Education Faculty, 30(1), 29-62. doi:10.7822/egt46
  81. Mack, C. A. (2012). How to write a good scientific paper: Acronyms. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 11(4). doi:10.1117/1.JMM.11.4.040102
  82. Mayring, P. (2004). Qualitative content analysis. A companion to Qualitative Research, 1(2), 159-176.
  83. MAXQDA (Version 11) Computer software. Berlin, Germany: Verbi GmbH. Retrieved from https://www.maxqda.com/
  84. McKillup, S. (2011). Statistics explained: An introductory guide for life scientists. Cambridge: Cambridge University Press.
  85. Mete, P., & Yıldırım, A. (2016). Views of teaching staff about application in chemistry classes of contextbased learning method. Journal of Bayburt Education Faculty, 11(1), 100-116.
  86. Migiro, S. O., & Magangi, B. A. (2011). Mixed methods: A review of the literature and the future of the new research paradigm. African Journal of Business Management, 5(10), 3757-3764. doi:10.5897/AJBM09.082
  87. Miles, M. B. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks: Sage.
  88. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal Medicine, 151(4), 264-269.
  89. OECD. (2023). PISA 2022 results: Volume I - The state of learning and equity in education. Retrieved from https://www.oecd-ilibrary.org/sites/53f23881-en/index.html?itemId=/content/publication/53f23881-en
  90. **Onwu, G. O., & Mufundirwa, C. (2020). A Two-Eyed Seeing context-based approach for incorporating indigenous knowledge into school science teaching. African Journal of Research in Mathematics, Science and Technology Education, 24(2), 229-240. doi:10.1080/18117295.2020.1816700
  91. Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049-1079. doi:10.1080/0950069032000032199
  92. Overman, M., Vermunt, J. D., Meijer, P. C., Bulte, A. M., & Brekelmans, M. (2014). Students' perceptions of teaching in context-based and traditional chemistry classrooms: Comparing content, learning activities, and interpersonal perspectives. International Journal of Science Education, 36(11), 1871-1901. doi:10.1080/09500693.2013.880004
  93. Pigott, T. D., & Polanin, J. R. (2020). Methodological guidance paper: High-quality meta-analysis in a systematic review. Review of Educational Research, 90(1), 24-46. doi:10.3102/0034654319877153
  94. Pilot, A., & Bulte, A. M. (2006). Editorial: Why do you 'need-to-know': Context-based education. International Journal of Science Education, 28(9), 953-955. doi:10.1080/09500690600702462
  95. Pluye, P., & Hong, Q. N. (2014). Combining the power of stories and the power of numbers: Mixed methods research and mixed studies reviews. Annual Review of Public Health, 35, 29-45. doi:10.1146/annual-publhealth-032013-182440
  96. Prins, G. T., Bulte, A. M., & Pilot, A. (2018). Designing context-based teaching materials by transforming authentic scientific modeling practices in chemistry. International Journal of Science Education, 40(10), 1108-1135. doi:10.1080/09500693.2018.1470347
  97. Ramsden, J. M. (1997). How does a context‐based approach influence understanding of key chemical ideas at 16+?. International Journal of Science Education, 19(6), 697-710.
  98. Ried, K. (2006). Interpreting and understanding meta-analysis graphs: A practical guide. Australian Family Physician, 35(8), 635-638.
  99. Rosenberg, M., Adams, D., & Gurevitch, J. (2000). MetaWin statistical software for meta-analysis, Version 2.0. Massachusetts, MA: Sinauer Associates Inc.
  100. Rosenthal, R. (1979). The file drawer problem and tolerance for null results. Psychological Bulletin, 86(3), 638.
  101. Rosenthal, R. (1991). Meta-analytic procedures for social research (Vol. 6). Thousand Oaks, CA: Sage.
  102. *Rusçuklu, P. (2017). Yaşam temelli öğrenme yaklaşımının 6. sınıf öğrencilerinin “maddenin tanecikli yapısı” ünitesindeki akademik başarı ve kalıcılıklarına etkisi (Unpublished master's thesis). Uludag University, Bursa.
  103. Schmidt, F. L., Oh, I. S., & Hayes, T. L. (2009). Fixed‐versus random‐effects models in meta‐analysis: Model properties and an empirical comparison of differences in results. British Journal of Mathematical and Statistical Psychology, 62(1), 97-128.
  104. Schwarzer, G., Carpenter, J. R., & Rücker, G. (2015). Meta-analysis with R (Vol. 4784). Cham: Springer.
  105. Sennett, R. (2008). The craftsman. Camberwell: Penguin Books.
  106. **Sevian, H., Dori, Y. J., & Parchmann, I. (2018). How does STEM context-based learning work: What we know and what we still do not know? International Journal of Science Education, 40(10), 1095-1107. doi:10.1080/09500693.2018.1470346
  107. Sevian, H., Hugi-Cleary, D., Ngai, C., Wanjiku, F., & Baldoria, J. M. (2018). Comparison of learning in two context-based university chemistry classes. International Journal of Science Education, 40(10), 1239-1262. doi:10.1080/09500693.2018.1470353
  108. Stanisavljević, J. D., Pejčić, M. G., & Stanisavljević, L. Ž. (2016). The application of context-based teaching in the realization of the program content "The decline of pollinators". Journal of Subject Didactics, 1(1), 51-63. doi:10.1080/2331186X.2021.1940635
  109. Sterne, J. A., & Harbord, R. M. (2004). Funnel plots in meta-analysis. The Stata Journal, 4(2), 127-141.
  110. Swirski, H., Baram-Tsabari, A., & Yarden, A. (2018) . Does interest have an expiration date? An analysis of students' questions as resources for context-based learning. International Journal of Science Education, 40(10), 1136-1153. doi:10.1080/09500693.2018.1470348
  111. **Şahin, Ö. (2021). The effect of context-based activities integrated with stem in science course on students' creativity skills (Unpublished master's thesis). Niğde Ömer Halisdemir University, Niğde.
  112. Şimşek, F. (2022). The effect of context-based stem activities on students' scientific literacy and motivation towards stem and their attitudes and anxieties towards science (Unpublished doctoral dissertation). Gazi University, Ankara.
  113. *Tağ, M. S. (2019). The effect of life-based learning approach on the processing of the unit of structure and properties of matter (Unpublished doctoral dissertation). Fırat University, Elazığ.
  114. Tashakkori, A., & Creswell, J. W. (2007). Exploring the nature of research questions in mixed methods research. Journal of Mixed Methods Research, 1(3), 207-211. doi:10.1177/1558689807302814
  115. Tashakkori, A., & Teddlie, C. (2008). Introduction to mixed method and mixed model studies in the social and behavioral sciences. In P. Clark & J. Creswell (Eds.), The mixed methods reader (pp. 7-26). Thousand Oaks, CA: Sage.
  116. Tashakkori, A., & Teddlie, C. (2010). Putting the human back in ''human research methodology'': The researcher in mixed methods research. Journal of Mixed Methods Research, 4(4), 271-277. doi:10.1177/1558689810382532
  117. Terrell, S. R. (2012). Mixed-methods research methodologies. The Qualitative Report, 17(1), 254-280. doi:10.46743/2160-3715/2012.1819
  118. Thalheimer, W., & Cook, S. (2002). How to calculate effect sizes from published research: A simplified methodology. Retrieved from https://www.researchgate.net/publication/253642160_How_to_calculate_effect_sizes_from_published_research_A_simplified_methodology
  119. Tulum, G. (2019). The effect of context-based material developed for science sciences course light subject on academic success (Unpublished master's thesis). Ondokuz Mayıs University, Samsun.
  120. Tytler, R., & Osborne, J. (2012). Student attitudes and aspirations towards science. In B. Fraser, K. Tobin, & C. McRobbie (Eds.), Second international handbook of science education (pp. 597-625). Hollanda: Springer.
  121. **Ulusoy, F. M. (2013). The effect of the integrative learning model supported with context-based learning on students' attitudes, motivation, and achievements towards chemistry teaching (Unpublished master's thesis). Hacettepe University, Ankara.
  122. Ulusoy, F. M., & Önen, A. S. (2014). A research on the generative learning model supported by context-based learning. Eurasia Journal of Mathematics, Science and Technology Education, 10(6), 537-546. doi:10.12973/eurasia.2014.1215a
  123. *Uzun, F. (2013). The effect of general physics-1 laboratory course based on context-based approach on science teacher candidates' achievements, scientific process skills, motivation, and remembrance (Unpublished doctoral dissertation). Marmara University, İstanbul.
  124. Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam med, 37(5), 360-363.
  125. Whitelegg, E., & Parry, M. (1999). Real-life contexts for learning physics: Meanings, issues, and practice. Physics Education, 34(2), 68. doi:10.1088/0031-9120/34/2/014
  126. Wilson, D. B. (2009). Systematic coding. The Handbook of Research Synthesis and Meta-Analysis, 2, 159-176.
  127. Wise, K. C., & Okey, J. R. (1983). A meta-analysis of the effects of various science teaching strategies on achievement. Journal of Research in Science Teaching, 20(5), 419-435. doi:10.1002/TEA.3660200506
  128. Yaman, M. (2009). Context and methods that attract students' interest in respiration and energy acquisition. Hacettepe University Journal of Faculty of Education, 37(37), 215-228.
  129. Yel, Ü. (2022). Sosyal bilgiler dersinde bağlam temelli öğretim süreçleri / Context-based teaching processes in social studies course (Unpublished doctoral dissertation). Gazi University, Ankara.
  130. Yel, Ü., & Çetin, T. (2023). Investigation of the Effects of Context-Based Learning Approach in Social Studies Curriculum and Textbooks. Third Sector Social Economic Review, 58(1), 559-582. doi:10.15659/3.sektor-sosyal-ekonomi.23.03.1990
  131. Yıldırım, A., & Şimşek, H. (2013). Qualitative research methods in social sciences. Ankara: Seçkin Publishing House.
  132. Yıldırım, B. (2018). Examining the effects of STEM applications prepared in accordance with context-based learning. Atatürk University Kazım Karabekir Education Faculty Journal, 36, 1-20.
  133. **Yılmaz, S. S., Yıldırım, A., & İlhan, N. (2022). Effects of the context-based learning approach on the teaching of chemical changes unit. Journal of Turkish Science Education, 19(1), 218-236. doi:10.36681/tused.2022.119
  134. **Yüzbaşıoğlu, M. K. (2022). 'Kuvvetin ölçülmesi ve sürtünme' ünitesine yönelik bağlam temelli tasarlanan çizgi romanların öğrencilerin temellendirilmiş zihinsel model gelişimine etkisi (Unpublished doctoral dissertation). Kastamonu University, Kastamonu.

Nasıl atıf yapılır

Duman, C., & Batdı, V. (2025). Bağlam Temelli Uygulamaların Kalıcılığa Etkisine İlişkin Çoklu Bütüncül Yaklaşım. Eğitim Ve Bilim, 50(221), 179-211. https://doi.org/10.15390/EB.2025.13288