Abstract
The purpose of this study is to address the ways in which mathematically gifted students reason when faced with both confirming and contradicting examples for a mathematical statement. By addressing this issue, this study aims to investigate the types of examples, generalizations and justifications that students construct after confronting confirming and contradicting examples for the statements. Eight students who enrolled in a Science and Art Center volunteered to participate in a semi-structured individual interview. The results indicated that the types and the purposes of suggested examples varied among the students. Research investigating student reasoning suggests that students’ justification schemes reflect their current view of the collection of examples that are considered as sufficient for the validation of a mathematical generalization. This study revealed that the types of examples were informative regarding the types of generalizations and arguments that were constructed by the students.
Keywords: Example types, Generalizations, Gifted students, Justifications, Mathematical reasoning
References
- Akkanat, H. (2004). Üstün veya özel yetenekliler. In M. R. Şirin, A. Kulaksızoğlu, & A. E. Bilgili (Eds.), Seçilmiş makaleler kitabı (pp. 167-193). İstanbul: Çocuk Vakfı.
- Alcock, L. J. (2004). Uses of example objects in proving. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (pp. 17-24). Bergen, PME 28.
- Alcock, L., & Inglis, M. (2008). Doctoral students’ use of examples in evaluating and proving conjectures. Educational Studies in Mathematics, 69(2), 111-129. doi:10.1007/s10649-008-9149-x
- Alcock, L., & Weber, K. (2010). Undergraduates’ example use in proof construction: Purposes and effectiveness. Investigations in Mathematics Learning, 3(1), 1-22. doi:10.1080/24727466.2010.11790
- Balacheff, N. (1988). Aspects of proof in pupils' practice of school mathematics. In D. Pimm (Ed.), Mathematics, teachers and children (pp. 216-235). London: Hodder & Stoughton.
- Balacheff, N. (1991). Treatment of refutations: Aspects of the complexity of a constructivist approach to mathematics learning. In E. von Glaserfeld (Ed.), Radical constructivism in mathematics education (pp. 89-110). Hingham, MA: Kluwer.
- Ball, D. L., Hoyles, C., Jahnke, H. N., & Movshovitz-Hadar, N. (2002). The teaching of proof. In L. I. Tatsien (Ed.), Proceedings of the International Congress of Mathematicians (pp. 907-920). Beijing: Higher Education Press.
- Ben-Zeev, T., & Star, J. (2001). Intuitive mathematics: Theoretical and educational implications. In B. Torff & R. J. Sternberg (Eds.), Understanding and teaching the intuitive mind: Student and teacher learning (pp. 29-56). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.
- Berg, D. H., & McDonald, P. A. (2018). Differences in mathematical reasoning between typically achieving and gifted children. Journal of Cognitive Psychology, 30(3), 281-291. doi:10.1080/20445911.2018.1457034
- Blanton, M. L., Levi, L., Crites, T., & Dougherty, B. J. (2011). Developing essential understandings of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: National Council of Teachers of Mathematics.
- Buchbinder, O., & Zaslavsky, O. (2009). A framework for understanding the status of examples in establishing the validity of mathematical statements. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (pp. 225-232). Thessaloniki: Aristotle University of Thessaloniki.
- Budak, I. (2012). Mathematical profiles and problem solving abilities of mathematically promising students. Educational Research and Reviews, 7(16), 344-350. doi:10.5897/ERR12.009
- Common Core State Standards for Mathematics. (2010). Common core state standards mathematics. VA: Author.
- Dörfler, W. (1991). Forms and means of generalization in mathematics. In A. J. Bishop, S. Mellin-Olsen, & J. Dormolen (Eds.), Mathematical knowledge: Its growth through teaching (pp. 61-85). Dordrecht: Springer Netherlands.
- Ellis, A. B., Ozgur, Z., Vinsonhaler, R., Dogan, M. F., Carolan, T., Lockwood, E., … Zaslavsky, O. (2019). Student thinking with examples: the criteria-affordances-purposes strategies framework. The Journal of Mathematical Behavior, 53, 263-283. doi:10.1016/j.jmathb.2017.06.003
- English, L., & Warren, E. (1995). General reasoning processes and elementary algebraic understanding: Implications for instruction. Focus on Learning Problems in Mathematics, 77(4), 1-19.
- Epp, S. S. (2003). The role of logic in teaching proof. The American Mathematical Monthly, 110(10), 886-899. doi:10.1080/00029890.2003.11920029
- Gal, H. (2019). When the use of cognitive conflict is ineffective-problematic learning situations in geometry. Educational Studies in Mathematics, 102, 239-256. doi:10.1007/s10649-019-09904-8
- Giannakoulias, E., Mastorides, E., Potari, D., & Zachariades, T. (2010). Studying teachers’ mathematical argumentation in the context of refuting students’ invalid claims. The Journal of Mathematical Behavior, 29, 160-168. doi:10.1016/j.jmathb.2010.07.001
- Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research. New Brunswick, NJ: Aldine Transaction.
- Goldenberg, P., & Mason, J. (2008). Shedding light on and with example spaces. Educational Studies in Mathematics, 69(2), 183-194. doi:10.1007/s10649-008-9143-3
- Gorodetsky, M., & Klavirb, R. (2003). What can we learn from how gifted/average pupils describe their processes of problem solving?. Learning and Instruction, 13(3), 305-325. doi:10.1016/S0959-4752(02)00005-1
- Hadamard, J. W. (1945). Essay on the psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.
- Harel, G. (1998). Two dual assertions: The first on learning and the second on teaching (or vice versa). The American Mathematical Monthly, 105(6), 497-507. doi:10.1080/00029890.1998.12004918
- Harel, G. (2001). The development of mathematical induction as a proof scheme: A model for DNR-based instruction. In S. Campbell & R. Zaskis (Eds.), Learning and teaching number theory (pp. 185-212). Norwood, NJ: Ablex Publishing Corporation.
- Harel, G., & Sowder, L. (1998). Students' proof schemes: Results from exploratory studies. In A. H. Schoenfeld, J. Kaput, & E. Dubinsky (Eds.), Research in collegiate mathematics education III (pp. 234-283). Providence, RI: American Mathematical Society.
- Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428. doi:10.2307/749651
- Hong, E., & Aqui, Y. (2004). Cognitive and motivational characteristics of adolescents gifted in mathematics: Comparisons among students with different types of giftedness. Gifted Child Quarterly, 48(3), 191-201. doi:10.1177/001698620404800304
- Komatsu, K. (2010). Counter-examples for refinement of conjectures and proofs in primary school mathematics. Journal of Mathematical Behavior, 29(1), 1-10. doi:10.1016/j.jmathb.2010.01.003
- Leikin, R. (2021). When practice needs more research: The nature and nurture of mathematical giftedness. ZDM-Mathematics Education, 53, 1579-1589.
- Ma, L. (1999). Knowing and teaching elementary mathematics. Teachers' understanding of fundamental mathematics in China and the United States. Erlbaum: Mahwah.
- Marton, F. (1986). Phenomenography - a research approach to investigating different understandings of reality. Journal of Thought, 21(3), 28-49. Retrieved from https://www.jstor.org/stable/42589189
- Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically (2nd ed.). Harlow: Pearson.
- Mata-Pereira, J., & da Ponte, J. P. (2017). Enhancing students’ mathematical reasoning in the classroom: teacher actions facilitating generalization and justification. Educational Studies in Mathematics, 96(2), 169-186. doi:10.1007/s10649-017-9773-4
- Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Thousand Oaks, CA: SAGE.
- Ministry of National Education. (2018). Ortaokul matematik dersi (1, 2, 3, 4, 5, 6, 7 ve 8. sınıflar) öğretim programı. Ankara: MEB.
- Ministry of National Education. (2022). Science and art centers directive. Retrieved from https://orgm.meb.gov.tr/meb_iys_dosyalar/2022_12/06214921_BIYLIYM_VE_SANAT_MERKEZLERIY_YOYNERGESIY.pdf
- National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. VA: Author.
- Patton, M. Q. (2002). Qualitative research and evaluation methods (3rd ed.). Thousand Oaks, CA: SAGE.
- Pedemonte, B., & Buchbinder, O. (2011). Examining the role of examples in proving processes through a cognitive lens: The case of triangular numbers. ZDM Mathematics Education, 43(2), 257-267. doi:10.1007/s11858-011-0311-z
- Péter-Szarka, S. (2012). Creative climate as a means to promote creativity in the classroom. Electronic Journal of Research in Education Psychology, 10(28), 1011-1034. doi:10.25115/ejrep.v10i28.1547
- Piaget, J. (1975). The child’s conception of the world. Totowa, NJ: Littlefield, Adams.
- Sriraman, B. (2004). Gifted ninth graders’ notions of proof: Investigating parallels in approaches of mathematically gifted students and professional mathematicians. Journal for the Education of the Gifted, 27(4), 267-292.
- Stavy, R., & Tirosh, D. (1996). Intuitive rules in science and mathematics: The case of ‘more of A - more of B’. International Journal of Science Education, 18(6), 653-667. doi:10.1080/0950069960180602
- Stylianides, A. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289-321. doi:10.2307/30034869
- Stylianides, A. J., & Ball, D. L. (2008). Understanding and describing mathematical knowledge for teaching: Knowledge about proof for engaging students in the activity of proving. Journal of Mathematics Teacher Education, 11, 307-332. doi:10.1007/s10857-008-9077-9
- Stylianides, A. J., & Stylianides, G. J. (2022). Introducing students and prospective teachers to the notion of proof in mathematics. Journal of Mathematical Behavior, 66, 100957. doi:10.1016/j.jmathb.2022.100957
- Stylianides, G. J., & Stylianides, A. J. (2009). Facilitating the transition from empirical arguments to proof. Journal for Research in Mathematics Education, 40(3), 314-352. doi:10.5951/jresematheduc.40.3.0314
- Trigwell, K. (2006). Phenomenography: An approach to research into geography education. Journal of Geography in Higher Education, 30(2), 367-372. doi:10.1080/03098260600717489
- Yopp, D. A. (2015). Prospective elementary teachers’ claiming in responses to false generalization. The Journal of Mathematical Behavior, 39, 79-99. doi:10.1016/j.jmathb.2015.06.003
- Yopp, D. A., Ely, R., Adams, A. E., Nielsen, A. W., & Corwine, E. C. (2020). Eliminating counterexamples: A case study intervention for improving adolescents’ ability to critique direct arguments. The Journal of Mathematical Behavior, 57, 100751. doi:10.1016/j.jmathb.2019.100751
- Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners generating examples. Mahwah, NJ: Lawrence Erlbaum Associates.
- Wechsler, D. (1975). Intelligence defined and undefined: A relativistic appraisal. American Psychologist, 30(2), 135-139. doi:10.1037/h0076868
- Wihlborg, M. (2004). Student nurses' conceptions of internationalisation in general and as an essential part of Swedish nurses' education. Higher Education Research & Development, 23(4), 433-453. doi:10.1080/0729436042000276459
- Yıldırım, A., & Şimşek, H. (2006). Sosyal bilimlerde nitel araştirma yöntemleri (6th ed). Ankara: Seçkin Yayıncılık.
- Zaskis, R., & Chernoff, E. J. (2008). What makes a counterexample exemplary?. Educational Studies in Mathematics, 68(3), 195-208. doi:10.1007/s10649-007-9110-4
- Zeybek Şimşek, Z. (2021). “Is it valid or not?”: Pre-service teachers judge the validity of mathematical statements and student arguments. European Journal of Science and Mathematics Education, 9(2), 26-42. doi:10.30935/scimath/10772
Copyright and license
Copyright © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License (CC BY), which permits unrestricted use, distribution, and reproduction in any medium or format, provided the original work is properly cited.
How to cite
Zeybek Şimşek, Z., & Kılıçoğlu, E. (2025). Investigating Student Reasoning When Faced with a Mathematical Statement that Contains both Confirming and Contradicting Examples. Education and Science, 50(222), 45-66. https://doi.org/10.15390/EB.2025.12962