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Abstract  Keywords 

This study examined in-service teachers’ understanding of the 

pure imaginary number 𝑖𝑏, particularly in its Cartesian form. This 

study was part of a broader design-based research study, which 

involved the development of a professional development (PD) 

program aimed at exploring five in-service teachers’ 

understanding of various forms of complex numbers. Data 

collection included pre- and post-written sessions along with 

interviews after the PDs. Data pointed to change in teachers’ 

conceptualization of 𝑖 where some could not reason algebraically 

or geometrically initially. Upon completion of the PD, however, all 

participants identified 𝑖 as one of the roots of the quadratic 

equation, 𝑥2 + 1 = 0 and were able to represent it geometrically as 

the point (0, 1) on the Complex plane. Additionally, all participants 

recognized the operator interpretation of 𝑖 as a 90-degree rotation. 

One participant also noted dilation meaning of 𝑏 when multiplied 

with 𝑖 and another participant reasoned on the repeated addition 

meaning. The results further highlighted specific challenges 

teachers faced in conceptualizing the pure imaginary number. 

Collectively, the results underscore the importance of addressing 

the pure imaginary part of the Cartesian form and the operator 

meanings of complex numbers in teacher education. Furthermore, 

these results suggest that quantitative reasoning could serve as a 

foundational way of thinking for making sense of complex 

numbers, including the unit 𝑖. 
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Introduction 

School curricula at different levels require working with different types of number systems as 

understanding the relationships between these systems is essential (CCSM, 2010). Among these, the 

complex number system is the most comprehensive, since it extends the real number system. The 

significance of complex numbers spans mathematics, physics, engineering, and various applied fields, 

making them a particularly important topic in science, technology, engineering, and mathematics 

(STEM) education. In particular, complex numbers are crucial in the learning of advanced mathematics 

and physics topics as well as in the learning of concepts of different fields of engineering including 

quantum physics (Karam, 2020), relativity, electromagnetic theory, signal processing (Atmaca et al., 

2014), hydrodynamics and electrical circuits (Benítez et al., 2013). Therefore, a robust conception of 

complex numbers has an important role in both accessing to and being successful in interdisciplinary 

fields (Anevska et al., 2015). 

In literature, it is argued that a comprehensive understanding of complex numbers requires 

interpreting them both geometrically and algebraically. Geometrically, a complex number can be 

viewed as a point on the Complex plane or as a vector (Fauconnier & Turner, 2002). Algebraically, it is 

an expression in the form 𝑎 + 𝑖𝑏 that “should be conceptualized as one number, i.e., the expression 𝑎 +

𝑖𝑏 is a single entity combining a real number and an imaginary number” (Nordlander & Nordlander, 

2012, p. 633). According to Sfard (1991), complex numbers can be considered as mathematical objects 

within a well-defined set where all elements share a common structure. Some researchers point to the 

challenges students face in conceptualizing complex numbers. Glas (1998) suggests that complex 

numbers often appear to be formal, abstract constructs to students that lack intuitive meaning or 

connection to real-world experiences. This abstraction can make it difficult for students to visualize 

complex numbers or understand their practical relevance. Nordlander and Nordlander (2012) further 

note that students frequently question the real-life applicability of complex numbers and struggle to 

grasp what they represent. To address these difficulties, researchers emphasize that students have a 

need to see the imaginary unit to consider any number as a complex number. Therefore, developing a 

meaningful comprehension of the Cartesian form, particularly the pure imaginary component, is 

crucial. In this paper, we specifically focus on teachers' conceptualization of the different meanings of 

the pure imaginary component within the Cartesian form. 

Sfard (1991) argued that conceptualizing complex numbers requires a person firstly to recognize 

that 𝑖 =  √−1, in the Cartesian form. Kontorovich (2018a) further stated that the radical sign √ 

“…initiates polysemy-a phenomenon in which the same concept or symbol can be interpreted in 

discrepant manners depending on the context in which they are used and on the curricular norms 

associated with the context” (p. 17). For instance, in the field of real numbers, √9 is equal to 3, aligning 

with the definition of a function where each input has a unique output. In contrast, within the complex 

number system, the square root becomes a multi-valued function and both -3 and 3 are considered to 

be roots of 9 (Kontorovich, 2018b). In this regard, scholars argue that 𝑖 must be comprehended as one of 

the square roots of (−1), requiring a shift in the classroom discourse where the expression ‘√−1 is not 

a number’ no longer holds (Nachlieli & Elbaum-Cohen, 2021). Furthermore, conceptualizing of 𝑖 as a 

vector and a point (0, 1) is essential (e.g., Karakok et al., 2015). This geometric interpretation connects 

also the unit 𝑖 with the 𝑖𝑏 component of the Cartesian form, where b is any real number. Particularly, 

conceptualizing 𝑖b as the multiplication of 𝑖 with a real number can lead to interpretation of 𝑖 “as a 

rotation of the real line through 90°” (Harding & Engelbrecht, 2007, p. 967), which produces Complex 

plane. This perspective further clarifies that real numbers are a subset of complex numbers and points 

the isomorphism between the Complex plane and the Cartesian plane, which can lead to an 

understanding as complementary rather than conflicting representations (Kontorovich et al., 2021). 

Therefore, researchers suggest that it is beneficial for both students and teachers to flexibly shift between 

these geometric and algebraic interpretations (Kontorovich et al., 2021). 
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Mathematics teachers are key figures in educating students who need to understand complex 

numbers, especially in STEM-related fields (NCTM, 2000). In this regard, we investigated teachers’ 

different conceptualizations of 𝑖 and 𝑖𝑏 both algebraically and geometrically before and after the 

completion of a PD study. This study contributes to the literature in the following ways.  

First, there are few studies on the conceptualization of pure imaginary numbers. However, for 

example, a study on teachers' conceptualization of different forms of complex numbers revealed that 

teachers had difficulty in making sense of pure imaginary numbers as both points and vectors (Karakok 

et al., 2015). Researchers also reported that teachers merely considered complex numbers as algebraic 

manipulations done with 𝑖. In addition, some eminent researchers have theoretically discussed the 

construction of the Cartesian form of complex numbers (e.g., Harel, 2013; Sfard, 1991) and examined it 

from an algebraic point of view (e.g., Nordlander & Nordlander, 2012; Panaoura et al., 2006). Also, in a 

previous study (Karagöz Akar et al., 2023b) working with the same teachers in the same PD, we reported 

on only the preliminary results after the completion of the study. In addition, we mostly discussed 

teachers’ dwelling on real number concepts while reasoning with multiplication of 𝑖 with real numbers, 

concluding a biased reasoning with complex numbers. Regarding the data on teachers’ biased 

reasoning, in this study, providing a detailed analysis, we elaborated on and explicated further reasons 

as to how teachers might have the complex number bias.  

Secondly, deviating from all the aforementioned research, in this study, we not only reported 

on data before and after the PD providing a development on the teachers’ different conceptualizations 

of 𝑖 and 𝑖𝑏 but also on their difficulties. Here, contributing further to the field, we specifically reported 

on the changes in teachers’ conceptualization of 𝑖 as one of the roots of 𝑥2 + 1 = 0 both algebraically 

and geometrically before and after the PD, which was regarded as an important step in understanding 

complex numbers (Sfard, 1991) and was reported as a missing knowledge base of high-school students 

(Kontorovich, 2018b; Nachlieli & Elbaum-Cohen, 2021). Also, comparing data from different teachers, 

we reported on the meanings of 𝑖𝑏 as rotation operator, dilation operator and repeated addition of 

multiplication.  

Third, the meaning that teachers attributed to the units of 𝑖 and 𝑖𝑏 both as vectors and points in 

the complex plane was examined from a quantitative reasoning perspective. Finally, previous studies 

emphasized that complex numbers historically emerged from mathematicians' consideration of the 

roots of cubic polynomials (e.g., Harel, 2013; Nahin, 2010). In this study, examining complex numbers 

as roots of quadratic equations through quantitative reasoning supports the statement that “complex 

numbers are the only roots that any polynomial equation has!” (Harel, 2013, p. 35) and is consistent with 

the Fundamental Theorem of Algebra. In the following section, we elaborate on how we extend the field 

further and how we envision complex numbers through the lenses of quantitative reasoning.  

Conceptual Framework 

Literature on Complex Numbers 

A comprehensive understanding of complex numbers requires knowledge of algebraic and 

geometric representations (see Table 1) across Cartesian, polar and exponential forms. This 

understanding also involves recognizing the connections between these representations and having the 

flexibility to transition among them (Karakok et al., 2015). 
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Table 1. Representations of Different Forms of Complex Numbers (Reproduced from Karakok et al., 

2015, p.329). 

Representation 

Form 

Purely 

imaginary 
Cartesian Polar Exponential 

Algebraic 𝑖, √−1, (0,1) 𝑎 + 𝑖𝑏, (𝑎, 𝑏), 𝑧 𝑟(cos 𝜃 + 𝑖 sin 𝜃), 𝑧 𝑟𝑒𝑖𝜃 

Geometric A point on the 

complex 

plane, a 

rotation 

operator 

A point on the 

complex plane, a 

vector with a 

magnitude of √𝑎2 + 𝑏2 

and an angle of 

tan−1(
𝑎

𝑏
) with the 

positive real axis, a 

rotation and dilation 

operator 

A point on the circle 

centered at the origin 

with radius 𝑟, a vector 

with magnitude of 𝑟 

and an angle of 𝜃 

with the positive real 

axis, a rotation and 

dilation operator 

A vector with magnitude 

of 𝑟 and an angle of 𝜃 

with the positive real 

axis, a point on the circle 

centered at the origin 

with radius 𝑟, a rotation 

and dilation operator 

However, existing research highlights the challenges that both students (Çelik & Özdemir, 2011; 

Nordlander & Nordlander, 2012; Panaoura et al., 2006; Soto-Johnson & Troup, 2014) and mathematics 

teachers face when working with complex numbers. Specifically, several studies report that teachers 

often struggle to establish connections between different representations (Conner et al., 2007; Karakok 

et al., 2015; Nemirovsky et al., 2012). This has led researchers to emphasize the importance of integrating 

both algebraic and geometric perspectives when teaching and learning complex numbers. 

Soto-Johnson and Troup (2014) investigated how mathematics majors reason algebraically and 

geometrically about complex-valued equations. Their findings revealed that students predominantly 

relied on algebraic reasoning. However, when explicitly prompted to consider the geometric aspects of 

the equations, they were able to engage with these perspectives effectively. Therefore, authors 

concluded that encouraging students to reason both geometrically and algebraically fosters a deeper 

integration of the two forms of reasoning (Soto-Johnson & Troup, 2014). Similarly, Nordlander and 

Nordlander (2012) conducted a study involving engineering undergraduates and high school students 

and found that many students struggled to grasp the fundamental nature of complex numbers—

specifically, the idea that any number can be considered a complex number. The researchers argued that 

making the imaginary unit 𝑖 explicitly visible is crucial for helping students conceptualize numbers as 

part of the complex system (Nordlander & Nordlander, 2012). In another study, Nachlieli and Elbaum-

Cohen (2021) explored twelfth-grade secondary school students’ understanding of complex numbers. 

They emphasized that a critical aspect of this understanding involves recognizing that “..the word 

number also signifies objects of the type 𝑎 + 𝑖𝑏, where a and b are real numbers, and 𝑖 is one of the 

square roots of (−1)...” (p. 5). Their findings suggest that when teachers actively question and prompt 

students to engage in reflective and investigative thinking, it can facilitate a discursive shift from real to 

complex numbers, allowing students to reason about these numbers in both algebraic and geometric 

terms. Further supporting these observations, Panaoura et al. (2006) found that secondary school 

students tend to view the algebraic and geometric representations of complex numbers as separate 

entities rather than as alternative forms of the same mathematical object. The researchers suggested that 

this difficulty may stem from the way complex numbers are typically introduced, with minimal 

emphasis on visual or geometric interpretations (Panaoura et al., 2006). 

Research on secondary mathematics teachers (Conner et al., 2007; Karakok et al., 2015) has also 

highlighted challenges in their conceptualization of complex numbers, particularly regarding the 

Cartesian, polar, and exponential forms. In a study with three in-service teachers, Karakok et al. (2015) 

found that one teacher struggled to visualize complex numbers as points on the Complex plane. For 

instance, when asked to represent 𝑖 geometrically, the teacher was uncertain whether it was located one 

unit above the origin. Another teacher viewed 𝑖 merely as a symbol and described complex numbers in 
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terms of algebraic manipulations involving 𝑖. Both teachers also experienced difficulty in connecting the 

vector representation to the Cartesian form. These findings suggest that the teachers primarily 

perceived complex numbers through algebraic operations rather than through their geometric 

interpretations. Similarly, prospective teachers faced challenges in making connections between 

complex numbers and their roots of quadratic equations (Conner et al., 2007). In another study, 

Nemirovsky et al. (2012) investigated prospective secondary mathematics teachers' geometric reasoning 

about complex numbers. By using a physical classroom floor setting, they encouraged teachers to 

explore the geometric meaning of addition and multiplication of complex numbers. This hands-on 

approach enabled the participants to conceptualize multiplication by 𝑖 as a 90-degree rotation on the 

Complex plane. Building on these findings, Saraç (2016) worked with a prospective secondary 

mathematics teacher and examined how she developed the Cartesian form of complex numbers through 

quantitative reasoning. The results revealed that the participant successfully conceptualized complex 

numbers as a single entity within a well-defined set—specifically, as the roots of any quadratic equation 

with real coefficients. Notably, contrary to Karakok et al.'s (2015) findings, this prospective teacher 

accurately identified 𝑖 as the point (0,1) on the Complex plane (Saraç & Karagöz Akar, 2017).  

In addition to these studies, researchers have suggested several instructional approaches to 

enhance students' understanding of complex numbers. For example, Edwards et al. (2021) proposed 

using 3D graphical representations to visualize the complex zeros of a quadratic function. Murray (2018) 

recommended employing geometric transformations, specifically using reflections from the vertex of a 

quadratic function, to help learners distinguish between real and non-real (imaginary) roots. Other 

studies emphasize the value of digital tools such as Computer Algebra Systems (CAS), Computer-Aided 

Assessment Systems (CAA) (Gaona et al., 2022), and GeoGebra (Caglayan, 2016; Seloane et al., 2023). 

These technology-based and visual approaches have been shown to improve students' ability to 

conceptualize complex numbers and to understand the roots of both quadratic and complex equations 

from a geometric perspective. 

The aforementioned studies indicate that teachers and students need to develop a robust 

understanding of complex numbers paying special attention to the algebraic and geometric meanings 

of complex numbers, and specifically of the unit 𝑖. Although providing important insights, these studies 

did not specifically focus on the different meanings of pure imaginary numbers. In this study, we report 

on in-service teachers’ conceptualizations of pure imaginary numbers. In addition, we propose that 

quantitative reasoning might provide a robust thinking process in the development of teachers’ 

conceptions of complex numbers. We do this in the following ways: First, we situate any complex 

number from the perspective of quantitative reasoning framework (Thompson, 1990, Thompson & 

Carlson, 2017). With this perspective, in this paper, we consider complex numbers as the quantification 

of the roots of any quadratic equation with real coefficients (Karagöz Akar, et al., 2024; Karagöz Akar et 

al., 2023, Karagöz Akar et al., 2023a; Saraç & Karagöz Akar, 2017). In this respect, as recommended in 

the literature (e.g., Kontorovich, 2018b; Nachlieli & Elbaum-Cohen, 2021), we report on data showing 

the change in teachers’ making sense of 𝑖 before and after the completion of a PD study. Secondly, 

situating the meaning of 𝑖 from the point of view of quantitative reasoning, we elaborate on how vectors 

could be a mediator for making sense of 𝑖 as a point. This is especially important as in-service teachers 

were reported having difficulties in making sense of 𝑖 both as a point and as a vector (Karakok et al., 

2015). In addition, the College Board of Mathematical Sciences (CBMS) emphasized that “complex 

numbers can fall into the chasm between high school and college, with high school teachers assuming 

they will be taught in college and college instructors assuming they have been taught in high school” 

(CBMS, 2012, p. 64). Therefore, reasoning about the pure imaginary numbers from the point of view of 

quantitative reasoning might provide the field a new lens on top of the conventional way of thinking 

about them as stated in most of the high school curricula such as “know there is a complex number i 

such that 𝑖2  =  −1, and every complex number has the form 𝑎 +  𝑖𝑏 with 𝑎 and 𝑏 real” (CCSSM, 2010, 

p. 60). It is in this regard that we scrutinized the following research questions: 
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1. What are in-service teachers’ conceptualizations of 𝑖 algebraically and geometrically before and 

after a PD program focusing on quantitative reasoning? 

2. What different meanings of 𝑖𝑏 do teachers have algebraically and geometrically upon 

completion of a PD program focusing on quantitative reasoning? 

In the following section, we explain the constructs of quantitative reasoning and how we 

conceptualize complex numbers through the lenses of quantitative reasoning. 

Quantitative Reasoning  

Quantitative reasoning refers to an individual's “analysis of a situation into a quantitative 

structure” (Thompson, 1990; p. 13). Moore et al. (2009) defined quantitative reasoning further as “…the 

mental actions of an individual conceiving a situation, constructing quantities of his or her conceived 

situation, and both developing and reasoning about relationships between these constructed quantities” 

(p.3). Quantity, quantification, and quantitative structure are paramount notions within quantitative 

reasoning.  

In a person's mind, quantity is a measurable attribute of an object (Thompson, 1990). A person 

has a mental image of an object and its measurable attributes (qualities) (Thompson, 1994) by explicitly 

or implicitly conceptualizing an appropriate unit. From this perspective, we understand complex 

numbers as the union of two quantities as directed distances (Karagöz Akar et al., 2024). This 

understanding arises from analyzing a mathematical object, such as quadratic functions, and breaking 

it down into a network of quantities and quantitative relationships, which include the roots and the x-

coordinate (abscissa) of the vertex with their distances to each other and from the origin (see Figure 1). 

The quantitative structure is then viewed as a network of quantities and quantitative relationships, 

where “quantitative relationship is the conception of three quantities, two of which determines the third 

by a quantitative operation” (Thompson, 1990, p. 11). Therefore, quantitative operations are mental 

operations that construct quantities. Quantification refers to the entire process of constructing quantities 

and quantitative relationships. We further elaborate on how we conceptualize complex numbers 

connected with quadratic functions through quantitative reasoning as follows. 

As Moore et al. (2009) emphasized, conceiving a situation requires envisioning an object and its 

attributes, such that the mental image “could be an image interpreted from a problem statement or a 

mathematical object (e.g., a graph)” (Moore et al., 2009, p.3). In this regard, the parabolas located on the 

coordinate system are the object of thought in this study, with elements such as the roots and the 

abscissa of the vertex having measurable properties. That is, given any quadratic equation 𝑎𝑥2 + 𝑏𝑥 +

𝑐 =  0 with real coefficients; two roots of the quadratic equation are of the form  

𝑥1,2 =  
−𝑏∓√b²−4ac

2𝑎
, where (b² − 4ac) is called the discriminant (Δ),  −

𝑏

2𝑎
 is the abscissa of the vertex and 

(
√∆

2𝑎
)  is the distance from (−

𝑏

2𝑎
, 0) to the roots on the x-axis (Hedden & Langbauer, 2003). 

√∆

2𝑎
 is regarded 

as a quantity whenever the learner evaluates the measure of the distance between the abscissa of the 

vertex and the roots. Similarly, whenever a person evaluates the distances of the roots to the origin, the 

roots are also considered a quantity. 

In this paper, we contend that such a conception of quadratic roots could promote the notion 

that complex numbers are the roots of quadratic equations with real coefficients, members of a well-

defined set (Sfard, 1991). For this we dwell on two main constructs of quantitative reasoning, namely 

covariation and multiplicative object (Thompson et al., 2017) in the following way.  
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First of all, algebraically, “we know that all complex numbers have the form 𝑥 + 𝑖𝑦, where x and 

y are real numbers. Real numbers being all those numbers which are positive, negative, or zero” 

(Panaoura et al., 2006, p. 683). We also consider algebraic representations such as 𝑥 + 𝑖𝑦, (𝑥, 𝑦), and z 

and geometric representations such as a point on the complex plane (Karakok et al., 2015). Then, given 

any complex number, 𝑧 =  𝑥 + 𝑖𝑦, one can assign meanings to 𝑥 and 𝑦 such that 𝑥 refers to −
𝑏

2𝑎
 

algebraically and the abscissa of the vertex of any quadratic function geometrically; and 𝑦 refers to 
√−∆

2𝑎
 

algebraically and the distances of the roots to (−
𝑏

2𝑎
, 0) geometrically (see Figure 1). Saldanha and 

Thompson (1998) defined the notion of covariation as someone’s “…holding in mind a sustained image 

of two quantities’ values (magnitudes) simultaneously” (p. 299). Then, the notion of a multiplicative 

object builds on a person’s image of the covariation of quantities where a person conceives a 

multiplicative object such that she “… tracks either quantity’s magnitude with the immediate, explicit, 

and persistent realization that, at every moment, the other quantity (quantities) also has (have) a 

magnitude(s)” (Stevens, 2019, p. 42). Thus, a person might decompose the quadratic formula and think 

of 𝑥1 and 𝑥2 considering 
−𝑏

2𝑎
 as the x-coordinate of-the-vertex (as well as the symmetry axis), and its 

distance to the roots, 
√∆

2𝑎
 located on the real number line (see figure 1). Considering the x coordinate of 

the-vertex with its distance to the origin and its distance to the roots is then a quantity in the mind of an 

individual (see Figure 1). Thus, one might conceive the roots of any quadratic equation as a quantity, 

having a distance to the origin and a distance to the x coordinate of the vertex (i.e., 
√∆

2𝑎
). In other words, 

on can conceive three quantities: 1) the distances of the roots and the x-coordinate of the vertex to the 

origin and 2) the roots’ distances to the x-coordinate of the vertex. Then, quantitative relationships 

among these quantities entail envisioning how the roots and the x-coordinate of the vertex are 

positioned on the number line as a point and as distances related to each other.  

 Thus, from the notion of multiplicative object, one might consider that the ordered pair (𝑥, 𝑦) 

or (−
𝑏

2𝑎
, 

√−∆

2𝑎
 ) is a single entity with two components that combines the magnitudes of two quantities 

simultaneously (Thompson et al., 2017), where each point is an element of the set of roots of any 

quadratic equation with real-coefficients. In this regard, we consider complex numbers quantitatively 

as a measure of the distance of roots (i.e., all the possible roots of quadratic equations) from the origin 

on the Complex plane.  

 
Figure 1. Locating all the roots of a quadratic equation with real coefficients on the plane (Modified 

from Melliger, 2007) 

In this structure, one can also conceive one part of the formula, √−1
√−∆

2𝑎
 in two ways: She can 

envision √−1 as one of the roots of 𝑥2 + 1 = 0 and assign a numerical value to 
√−∆

2𝑎
 as 1, considering that 

the other part of the formula, 
−𝑏

2𝑎
 , is zero. This might further enable to think of the geometric meaning 

of √−1 as referring to (0, 1) on the imaginary axis with one unit distance above the origin. This image 
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has the potential to trigger an understanding of √−1 as a multiplier and 
√−∆

2𝑎
 as a multiplicand since √−1 

can be considered as 90 degrees (i.e., a rotation operator) counter-clockwise rotation of any real number 

of the form (
√−∆

2𝑎
, 0) and locating them on the imaginary axis as (0, 

√−∆

2𝑎
). This image also aligns with what 

Descartes considered: superimposing the real line onto itself, turning all the points 90 degrees, which 

would yield the coordinate plane (R2) (Fauconnier & Turner, 2002). This image can further afford 

thinking of 
√−∆

2𝑎
 as a multiplier (the operator) and √−1 as a multiplicand as the person knows that 

√−∆

2𝑎
 is 

a real number. As stated previously, it is essential to simultaneously consider the algebraic and 

geometric meanings of complex numbers in order to comprehend any form of complex numbers.  

Method 

This study is part of a design-based research (DBR) that aimed at enhancing teachers' content 

knowledge of complex numbers through a PD study. We carried out classroom teaching experiments, 

followed by a multi-case study (Yin, 2014). In this paper, we present the findings from the multi-case 

study, emphasizing teachers' existing knowledge base related to their different meanings of the pure 

imaginary number before and upon completing the PD. 

Participants and Data Collection Process 

This study involved five secondary school mathematics teachers with 2 to 10 years of teaching 

experience and degrees in secondary mathematics education. The selection process began with ten 

teachers completing an open-ended written assessment on complex numbers (pre-written session). In 

this session, participants were asked to provide algebraic and geometric definitions of quadratic 

functions and equations, different representations of complex numbers, and vectors. Based on our 

analysis of their responses, eight participants were purposefully selected according to their background 

knowledge aligned with the pedagogical goals of our study (Simon, 2000): 1) They demonstrated 

knowledge of quadratic functions and the definition and expression of vectors. 2) They either did not 

mention complex numbers in the Cartesian, polar, or Euler forms, or did not explain the relationships 

between these representations. Nevertheless, five participants declared their availability to attend the 

study. 

As shown in Table 2, the study included four teaching sessions, each lasting between 120 and 

150 minutes. 

Table 2. Data Collection Procedure 

Sessions Focus of the Sessions 

Pre-written session Analysis of participants’ background knowledge 

PD session 1 Cartesian form, graphs of and distances within different parabolas 

PD session 2 Cartesian form and geometric representation of complex numbers 

PD session 3 Definition and properties of vectors and polar form of complex numbers 

PD session 4 The Euler form of complex numbers 

Post-written session Analysis of participants’ current knowledge 

Semi-structured 

interviews 

The participants’ current conceptualization of the connections among different 

forms of complex numbers (30-45 min.) 

The first two sessions focused on examining the Cartesian form of complex numbers in relation 

to quadratic equations through quantitative reasoning (Saraç & Karagöz Akar, 2017). The third session 

covered the polar form, while the final session addressed the Euler form. 

In the context of DBR investigations, the focus was on the theory of quantitative reasoning by 

examining complex numbers within a quantitative structure. In this structure, complex numbers are 

understood as a union of two quantities, which are directed distances and are the roots of any quadratic 

equation with real coefficients. After the participants came to a definition of complex numbers in 

relation with the roots of any quadratic equation with real coefficients and located them as points on 
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the Complex plane (see figure 1) in PD session 2, specific to the pure imaginary numbers in PD session 

3, we asked them to consider the definition of a vector and then think about the qualities of the located 

points. Once they considered these issues, they could justify how they could think of complex numbers 

as vectors. At this point, we asked them to evaluate the roots of the equation, 𝑥2 + 1 = 0 , in terms of 

the components of the roots of any quadratic equation, namely, 
−𝑏

2𝑎
 and 

√−∆

2𝑎
. They evaluated that 

numerically 
−𝑏

2𝑎
 was equal to 0 and 

√−∆

2𝑎
 was equal to 1. Given their knowledge of the fact that complex 

numbers could be represented as vectors with quantities of distances to the origin and with angle 

measures to the horizontal axis, this allowed them to further conceive that 𝑖 can be represented as a 

vector and a point (0, 1) on the Complex plane.  

After the PD sessions ended, a post-written session was conducted. Then, the first author, who 

also facilitated the PD, carried out video-recorded semi-structured interviews to gather data on how 

participants understood the connections among different forms of complex numbers. The interviews 

lasted between 30 and 45 minutes. Additionally, participants' written artifacts were collected. Regarding 

the meaning of 𝑖, the pre and the post-written sessions included the following questions “Could you 

explain what the number 𝑖 is? Could you show it on the complex plane? Please algebraically and 

geometrically explain 𝑖2. Justify your answer.” Also, in the post-interview, a sample of questions were 

“How can we represent 𝑖 geometrically? How do we express 𝑖 squared (𝑖2) algebraically? How do we 

express it geometrically? The multiplication of 𝑖 and square root minus delta over two a, (𝑖. 
√−∆

2𝑎
) where 

is that number on the Complex plane?” 

Data Analysis 

For data analysis, we employed the constant comparative method (Clement, 2000). The research 

team collectively reviewed the participants' written responses and transcripts of all interviews, and we 

watched video recordings when necessary to identify and characterize how teachers conceptualize 

complex numbers both algebraically and geometrically. Each participant's statements in the transcripts, 

which ranged from a single sentence to an entire paragraph for each interview question, served as our 

units of analysis. We conducted the analysis using the premises of quantitative reasoning. Specifically, 

we focused on how teachers understood complex numbers quantitatively, such as representing a 

complex number 𝑖 as one unit distance from the origin, and how they explained its meaning as an 

operator. We first analyzed the data for each participant individually and then examined the responses 

to each question across different participants. We created narratives that illustrated how participants 

conceptualized complex numbers 𝑖 and 𝑖𝑏 through quantitative reasoning, comparing and highlighting 

the similarities and differences in their thought processes. 

Results 

In the following sections, first we provide results from pre-and post-written sessions related to 

the different conceptualizations of 𝑖 which include the definition and geometric representations (See 

Table 3). Then, we share data from the interview regarding one of the participant’s difficulty in locating 

𝑖 on the Complex plane. We also provide data on teachers’ responses on the algebraic and geometric 

meanings of the powers of 𝑖 before and after the PD. Additionally, we share data on two participants’ 

handling the complex number bias. We finalize this section by presenting different meanings of 𝑖𝑏 and 

𝑖 with the examples from interview data.  
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Defining and Representing 𝒊 as a Point on the Complex Plane  

All the teachers could define 𝑖 in the following ways before and after PD as indicated in Table 

3. 

Table 3. Teachers’ Responses Regarding Definition and Geometric Meaning of 𝑖 Before and After PD 

Before PD After PD 

T1 

T2 

T3 

T4 
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Table 3. Continued 

 Before PD After PD 

T5 

 

 

As the table indicated, before the PD, all the teachers either defined 𝑖 as √−1 or 𝑖2 =  − 1. Only, 

T2 pointed to 𝑖 as the root of the quadratic equation, 𝑥2 + 1 =  0. Also, data showed that three of the 

teachers geometrically pointed to 𝑖 on the complex plane. In addition, T4 and T5 pointed to the fact that 

geometrically 𝑖 is one unit from the origin on the imaginary axis.  

On the other hand, after the PD, in their answers in the post-written session, T2, T4 and T5 not 

only stated that 𝑖 is one of the roots of the quadratic equation, 𝑥2 + 1 =  0 but also could consider 𝑖 =

√−1. However, T3, provided the following definition 𝑖 is the number which places at the point (0, 1) in 

the imaginary axis”. It is important to point that teachers’ use of the expression “one of the roots…” 

together with data on how they located 𝑖 on the complex plane as (0,1) has merit as teachers need to 

know that although we accept √−1 as the principle root, - √−1 is also another root of 𝑥2 + 1 =  0. This 

was specifically shown in T4’s written statement such as “𝑖 and its conjugate - 𝑖”. 

Similarly, regarding the geometric representation of 𝑖, all the teachers except T4 could locate 𝑖 

as a point (0, 1) on the Complex plane. Compared to the data before PD, participants’ use of (0, 1) to 

show 𝑖 on the complex plane indicated a development on their part. However, T4 wrote (0, √−1) and 

stated that (0, √−1) points to √−1 unit distance on the imaginary axis. So, we further inquired how she 

reasoned about placing 𝑖 on the complex plane. 

A Possible Difficulty About Showing 𝑖 Geometrically 

We now present data on T4's reasoning regarding representation of 𝑖 on the Complex plane 

during the post-interview. T4 again defined 𝑖 as one of the roots of the quadratic equation, 𝑥2 + 1 =  0. 

She also stated that 𝑖 is the number whose square equals -1 and noted that it is equivalent to √−1. In her 

drawing, T4 first represented 𝑖 by writing it as (0,
√−∆

2𝑎
) and then provided an example. She also labeled 

the points 3𝑖 and 𝑖 on the imaginary axis (see Figure 2): 
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Figure 2. T4’s Attempts for Geometric Representation of “i” 

Then, hesitantly she questioned if she can use (0, 3) instead of 3𝑖. She further stated that 𝑖 was 

1 unit above the origin on the imaginary axis. 

Discussion continued: 

R: Then what happens if you show as a point? 

T4: I can’t, I don't know, I can't be sure about that (0, 1). 

R: Why? You weren't sure about (0, 3) either, were you? 

T4: Yes, I wasn't sure about (0, 3) either because we talked about something, for 

example, we said that we can say 3𝑖 and 𝑖 as distance, for example, we couldn't compare 

them in terms of size. Yes this is 1 unit of distance (referring to the distance between i 

and the origin) this is 3 units of distance (referring to the distance between 3𝑖 and the 

origin in Figure 2) but when I show it as a point, I am not sure if I can write (0, 3) like a 

coordinate. 

 
Figure 3. T4 locating 𝑖 as (0, 1) and 3𝑖 as (0, 3) 

As the data and Figure 2 and Figure 3 indicated, T4 experienced difficulty in representing 𝑖 as 

a point on the imaginary axis. She recognized that 𝑖 was one unit and 3𝑖 was 3 units above the origin 

and that they were positioned at specific distances on the imaginary axis. In addition, she understood 

that in the binomial form, 𝑥+ 𝑖𝑦, the first component referred to the real part, −
𝑏

2𝑎
, while the second 

component referred to the imaginary part, (
√4𝑎𝑐−𝑏²

2𝑎
) (see Figure 2). She also noted that in the case of 𝑖, 

the first component was equivalent to 0 and the second component was equal to 1 when considering 

numerical values. However, from the PD discussions, she remembered that complex numbers cannot 

be ordered in the same way real numbers can. This realization led her to question whether it was feasible 

to represent 𝑖 on the imaginary axis as (0, 1), despite knowing it was one unit above the origin, located 

on a unit circle. Specifically, she contemplated that if she used (0, 1) or (0, 3) for representing 𝑖 and 3𝑖 

respectively, it would revert back to real numbers, which can indeed be ordered (for example, 1 is 

smaller than 3). More importantly, she understood that if she used (0, 1) as shown on ℝ2, to represent 

𝑖, it might contradict the understanding that complex numbers cannot be ordered. As a result, she was 

uncertain if she could express 3𝑖 as (0, 3). She appeared to be thinking that points on the imaginary axis 

ought to be represented by imaginary symbols. 

When prompted to reflect on her earlier drawing of the roots on the Complex plane, T4 recalled 

that complex numbers can be represented as ordered pairs of real numbers. This realization allowed her 

to represent the binomial form 𝑥+ 𝑖𝑦 as (𝑥, 𝑦) on the Complex plane, enabling her to express 𝑖 as (0, 1). 

Despite the progress, T4 continued to struggle with comparing the magnitudes of 𝑖 and 3𝑖 indicating an 
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incomplete understanding of the magnitude of complex numbers. A significant observation is that T4’s 

attempts to compare real and complex numbers based on the property of ordering are conceptually 

invalid when viewed within ℝ2 and the Complex plane. Unlike the real number system, where numbers 

can be arranged in an ordered sequence, no such inherent ordering exists in ℝ2 or the Complex plane. 

This limited understanding suggests that T4 may be applying familiar real-number concepts 

inappropriately to the more abstract structure of complex numbers. 

Meaning of 𝒊 and 𝒃 as Operators 

Powers of 𝑖 Algebraically and Geometrically 

We share data both from the pre-written and the post-written session in which the participants 

were asked to explain 𝑖2 both algebraically and geometrically. Data in Table 4 shows that, in the pre-

written session, some teachers’ answers pointed that although they could write and state 𝑖2 as equal to 

-1, they did not know how to show it on the Complex plane geometrically. Particularly, for the geometric

meaning of 𝑖2, except T5, they stated “I do not know” or they left it blank. In addition, we considered

T1’s answer as insufficient as we could not tell if she answered the question or if she explained 𝑖 both

algebraically or geometrically. Contrarily, in the post-written session, all the participants could explain

the powers of 𝑖 algebraically by referring to 𝑖 as equal to √−1 . All of them also reasoned that 𝑖 refers to

a 90-degree rotation counter clockwise geometrically.

Table 4. Teachers’ Responses Regarding Algebraic and Geometric Meaning of 𝑖2 and powers of 𝑖 

Before and After PD 

Expressing 

powers of ‘i’ 
Before PD After PD 

Use of 

algebraic 

meaning 

Use of 

operator 

meaning 
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Complex Number Bias 

During the interview, all participants but T1 provided valid explanations as to how they 

reasoned both algebraically and geometrically. T1 could mention both the operator and the dilation 

meanings of multiplication of complex numbers. However, her explanations pointed to complex 

number bias when reasoning about 𝑖 algebraically. As exemplary, we also provide data from T5 on her 

reasoning about 𝑖 algebraically to further compare it with T1’s reasoning.  

When asked how they interpreted 𝑖2 in the interview, T5 provided the following explanation:  

T5: Because 𝑖 was equal to √−1. Therefore, the number we called 𝑖2 became√−1.√−1. 

This gave us the number -1. Minus one is a real number. So, if we write this as a complex 

number, in the format 𝑥 + 𝑖𝑦, it becomes 0+, sorry,−1 + 0𝑖. That's why I said we can 

show it as a number, as a point on the x-axis, at a distance of 1 unit form 0, on the left 

side, the negative side. So, I said directly it will be on the real axis. 

As the excerpt showed T5 could state that 𝑖2 is equal to -1. Her statement about the cartesian 

form of complex numbers, 𝑥 + 𝑖y, and corresponding it with −1 + 0𝑖, and thinking about -1 as part of 

the cartesian form algebraically pointed that she not only realized that real numbers are part of complex 

numbers but also she knew that as a number -1 referred to 1 unit distance from the origin. This further 

suggested that she could reason about a power of 𝑖 quantitatively. However, she did not clarify how 

she understood or derived the equality √(−1). √(−1) = −1 and the researcher did not ask for further 

explanation. T5’s previous statements, where she identified 𝑖 as the number whose square equals -1, 

may have influenced her reasoning for writing this equality. 

However, T1’s explanations about 𝑖2 pointed to complex number bias: 

T1: Let's write (𝑖2) algebraically. Algebraically, it is multiplying (√−1.√−1). Our rules 

in real numbers are valid here. We can multiply two numbers inside a single root. It 

becomes (√1). So it's one. Um, where do we put it? The result is a real number, so we 

multiplied two imaginary things, and the answer came out real. Then I'll show on the 

real (see Figure 4) 

 
Figure 4. T1 writing about 𝑖2 

That's here somewhere (referring to Figure 5), I'm trying to make these things equal. 

(𝑖2) will be at (1, 0) isn't it? Yes. Because (𝑖2) is positive. I mean, I think that we cannot 

write (𝑖2) under it (talking about how to label the point (1, 0)) because it is (𝑖2). This is 

(1, 0). One minute, (𝑖2) would be -1, right? My mind is burning now. One minute. I 

multiplied 𝑖 with 𝑖, that is (𝑖2). The (𝑖2) has to be -1. Sorry, it won't be like this. This will 

be -1. 

 
Figure 5. T1 locating 𝑖 on the Complex plane 

As the data showed T1 reasoned with the rules utilized in real numbers such that she considered 

that √𝑎. √𝑏 = √𝑎. 𝑏 in real numbers also is valid for complex numbers. This suggested that she held 

complex number bias. This is because, √𝑎. √𝑏 = √𝑎. 𝑏 if a and b are both positive or at least one of them 

is negative or zero. However, √𝑎. √𝑏 ≠ √𝑎. 𝑏 if a and b, both are negative. On the other hand, once she 
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thought of 𝑖 as the number whose square is -1, she corrected herself. Discussion got more interesting 

when the researcher asked how T1 reasoned: she corrected herself by giving an example from real 

numbers, multiplying √2 with √2 and concluded that she was wrong in saying that √−1.√−1 would be 

equal to 1. She even commented on 𝑖3 and stated that it would be equal to (0, −1) on the Complex plane. 

Then the researcher asked:  

R: Okay. Can you tell me again why you changed your mind here? 

T1: I changed my mind here because of this: This is not a real thing (referring to √−1). i 

is not a negative number. i is something like root negative one (see Figure 6) 

That's why I changed my mind. Because if 𝑖 was the number -1, the square of -1 will 

come out as 1 anyway. There is no problem there. But this is defined as root -1 anyway, 

there is no such thing normally. But there are two expressions inside the root. Both are 

the same. It is like, as if the roots have canceled out each other. So it's like it turned into 

a square. That's why I changed my mind. 'Cause if I do this it'll be like I'm squaring -1.

Then it will be as if I have defined it like this. But it is not like 

that  

 
Figure 6. T1’s Algebraic Explanation on 𝑖2 

Providing an example from real numbers, T1 reasoned that √𝑎. √𝑎 =  𝑎 for any non-negative 

real number and explained that the result of √(−1) √(−1) =  − 1 . However, her explanations still 

related to the rules held in non-negative real numbers. That is, her explanations were not 

mathematically valid and she did not provide a legitimate proof. To summarize, T1’s explanations 

indicated that she seemed to think the same properties hold for the radicand in both real and complex 

numbers. 

Different Meanings of “𝑖𝑏”  

As we stated earlier, all the participants pointed to multiplying 𝑖 with 𝑖 as referring to a 90-

degrees counter clockwise rotation after the PD. In this section we provide data from T1 as exemplary 

for not only to point to how one participant reasoned about the rotation operator but also about the 

dilation operator meanings of multiplication within complex numbers. It is also necessary to point that 

as the data below indicated, T1 knew that in the cartesian form of complex numbers, 𝑥 +  𝑖y, 𝑥 referred 

to 
−𝑏

2𝑎
 and y referred to 

√−∆

2𝑎
. In addition, we provide data from T4 to compare her reasoning to T1’s 

reasoning where T4 seemed to be thinking and transferring the repeated addition understanding of 

multiplication while reasoning about 𝑖𝑏. 

Discussion with T1 on the meaning of √−1.
√−∆

2𝑎
 followed:  

R: This 𝑖 times 
√−∆

2𝑎
 

T1: Where will it be?  

R: What does it correspond to, yeah, where will that number be? 
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T1: On here (showing a point on imaginary axis). It is on the imaginary axis. It depends 

on the value of the coefficient. So for instance, if 
√−∆

2𝑎
 is 3, I'll be pointing at “3𝑖”. Or like 

I'll be pointing at −3𝑖. It's not a real number (referring to 𝑖 ), but it has a real coefficient. 

I can say it is getting bigger or smaller according to that. Saying getting bigger or 

smaller may not be very accurate, as I said, because of the definition of 𝑖, it may not be 

like is 𝑖 bigger than 3𝑖, but we can assume its distance as the distance to zero and we 

can place it (talking about real number times i) Since that is positive, we can place it. 

R: Okay. You're telling me… you say that when I multiply it with 𝑖, I can place 𝑖𝑏 here 

(pointing to the imaginary axis). I'm asking you if you can explain 
√−∆

2𝑎
 when multiplied 

with 𝑖.  

T1 continued her thinking suggesting that she struggled to articulate the geometric meaning of 

multiplying a real number with 𝑖. She even considered that when she multiplied 
√−∆

2𝑎
 with 𝑖, −

𝑏

2𝑎
 was 

zero and she knew that 
√−∆

2𝑎
𝑖 was on the imaginary axis. Then, the researcher prompted her twice to 

explain the meaning of multiplying a real number with 𝑖 . She then responded:  

T1: Okay, for example 
√−∆

2𝑎
 was on this line (referring to the real axis). Because it was 

real. When I multiply it with 𝑖, shall I say if it rotates, what shall I say? It went this way. 

It moved to the imaginary axis. It rotated, it rotated. It rotated, from here (meaning the 

real axis) to here (meaning the imaginary axis). Rotated ninety degrees, yes.  

The data revealed that T1 initially interpreted the expression √−1
√−∆

2𝑎
 as multiplying 𝑖 with a 

real number, focusing on multiplication with a scalar rather than recognizing it as a real number being 

multiplied with 𝑖, which represents a rotation operator. This interpretation may have been influenced 

by the syntactic structure of the expression, where the order of multiplication symbolically suggests that 

the real number acts on 𝑖. T1 appeared to view √−1 as the multiplicand and 
√−∆

2𝑎
 as the multiplier, 

implying that the real number scales or dilates 𝑖 along the imaginary axis. Several factors likely 

contributed to this understanding. First, during the interview, T1 consistently interpreted the Cartesian 

form of complex numbers as vectors. She explicitly described 𝑖 as a unit vector corresponding to (0, 1) 

and comprehended 
√−∆

2𝑎
 as a distance from the origin. This vector-based interpretation might have 

allowed her to position multiples of 𝑖 as points on the imaginary axis. Second, she referred to (−
𝑏

2𝑎
) as 

zero and identified 
√−∆

2𝑎
 as a real number. This suggested that she connected this reasoning to the 

geometric interpretation of complex roots of quadratic equations, reinforcing her making sense of 
√−∆

2𝑎
 

as a scalar acting on 𝑖, dilation meaning of multiplication. On the other hand, the data also indicated 

that T1 struggled to conceptualize 𝑖 as a rotation operator. It was only after the researcher explicitly 

directed her attention to this distinction multiple times that T1 acknowledged the geometric meaning 

of 𝑖 as a multiplier. Once prompted, she recognized that multiplying a real number with 𝑖 rotates it 90 

degrees, thereby locating it on the imaginary axis. This shift in understanding suggests that T1 was 

capable of reasoning about the multiplication of 𝑖 with real numbers in two distinct ways—both as a 

dilation and a rotation operator—although she required external prompting to articulate the latter 

perspective. More importantly, T1’s consideration of 3 in 3𝑖 as a distance to zero and 
√−∆

2𝑎
 in 

√−∆

2𝑎
𝑖 as a 

distance on the real number line suggested that she reasoned on 𝑖𝑦 component of the cartesian form of 

complex numbers, 𝑥 + 𝑖𝑦 quantitatively. We argue that such consideration yielded T1 to explain her 

reasoning behind multiplication of 𝑖 with a real number both as a dilation and rotation operator as she 

was able to locate both 𝑖 and 𝑦 on the complex plane as (0, 1) and (0, 𝑦) respectively.  
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Comparatively, T4 reasoned as the following about 
√−∆

2𝑎
𝑖 while thinking about the polar form: 

T4: Okay, I will say 1 to this (see Figure 7). I add the vector 1 as much as |𝑧|𝑐𝑜𝑠𝜃 and I 

make the x component from here, when I express it in binomial form it becomes |𝑧|𝑐𝑜𝑠𝜃.. 

Then I can apply it here, for example, 𝑖, (adding) as much as 𝑦𝑖. When I combine the 

units there, |𝑧|𝑠𝑖𝑛𝜃 there, this time I get 𝑦𝑖. When I move that 𝑦 by |𝑧|𝑐𝑜𝑠𝜃 and add it to 

the end, for example, I arrive at this point (showing the location of the complex number) 

and there, I can show it as |𝑧|𝑠𝑖𝑛𝜃 too ( showing dotted lines in the figure). 

 

Figure 7. T4 representing repeated addition of 
√−∆

2𝑎
𝑖 with reference to 𝑖|𝑧|𝑠𝑖𝑛𝜃 

Data pointed to some important conclusions: First, similar to T1’s reasoning, T4’s thinking of 𝑖 

as 1 unit on the imaginary axis suggested that she seemed to be thinking 𝑖𝑦 component of the cartesian 

form of complex numbers, 𝑥 + 𝑖𝑦 quantitatively. Particularly, T4 seemed to consider that 
√−∆

2𝑎
𝑖 where 𝑦 

is equal to |𝑧|𝑠𝑖𝑛𝜃 is a distance on the imaginary axis. More importantly, comparing to T1’ s reasoning, 

T4’s thinking of 
√−∆

2𝑎
𝑖 pointed that T4 seemed to be repeatedly adding the (1, 0) vector on the real axis to 

form the x-component while adding repeatedly the (0, 1) vector on the imaginary axis to form the 𝑦 

component of 𝑥 + 𝑖𝑦. That is, T1’s data showed that her reasoning involved multiplication of a real 

number with 𝑖 as a dilation operator whereas T4’s reasoning involved multiplication with repeated 

addition. As a final remark, data also suggested that T4’s reasoning on the 𝑥 component as a vector with 

repeated addition of the unit vector (1, 0) and on the y component as a vector with repeated addition of 

the unit vector (0, 1) seemed to enable her to think of 𝑥 + 𝑖𝑦 as a vector addition. 

Discussion and Suggestions 

The study's findings revealed that after completing a PD that focused on the connections 

between various forms of complex numbers, in-service teachers developed both algebraic and 

geometric interpretations of 𝑖. Specifically, results showed that prior to the PD, none of the teachers 

could state 𝑖 as one of the roots of 𝑥2 + 1 = 0 whereas upon completion of the PD, all the participants 

not only could recognize 𝑖 as the principal root but also could conceptualize it as a vector and a point 

on the Complex plane. Also, all teachers were able to describe 𝑖 as a rotation operator. Additionally, one 

participant demonstrated a more advanced understanding by interpreting 𝑖𝑏 in two ways: as 𝑖 

performing a 90-degree rotation on 𝑏 and as 𝑏 acting on 𝑖 as a dilation operator. On the other hand, 

another participant could explain 𝑖𝑏 by repeated addition of the unit vector (0, 1). Results further 

pointed to a teacher’s biased thinking on the algebraic meaning of √−1√−1. In addition, different from 

earlier research, data showed how in-service teachers could or could not overcome their difficulties on 

their own considering complex numbers as the quantification of the roots of quadratic equations. We 

acknowledge that this study was conducted with only five in-service teachers. However, results point 

to some important insights about how they conceptualized different meanings of 𝑖 and 𝑖𝑏. In what 

follows, while discussing the results of the study, we also point to the implications for further research 

on and teaching of the algebraic and geometric meanings of 𝑖. 
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Defining and showing 𝒊 as a point on the Complex plane  

Results showed that T2, T4 and T5 identified 𝑖 as one of the roots 𝑥2 + 1 = 0 in their definitions. 

As exemplified, T4 even algebraically pointed ±𝑖 as the two roots. In addition, T1 also had an awareness 

of 𝑖 as one of the roots of 𝑥2 + 1 =  0. Results importantly extend previous research as researchers 

emphasized that 𝑖 needs to be conceptualized by students and teachers as one of the square roots of −1 

(Kontorovich, 2018b; Nachlieli & Elbaum-Cohen, 2021) since both teachers and students need to be 

aware of the different interpretations of the radical sign in different number sets (Kontorovich, 2018b). 

However, results also showed that all participants described √−1 as equal to 𝑖. Since 𝑖 is considered as 

the principal root of 𝑥2 + 1 =  0 in formal mathematics, these conceptualizations of the teachers can be 

considered as valid (e.g., Kontorovich, 2018b; Usiskin et al., 2003).  

Going beyond the algebraic manipulations, data particularly pointed that in-service teachers 

were able to link the roots of 𝑥2 + 1 = 0 to their conceptualization of complex numbers as the 

quantification of the roots of any quadratic equation with real coefficients. That is, as specifically shown 

by data from T4 in table 3 and in Figure 2 and Figure 7 and in T1’s explanations, while considering 𝑖 

and 𝑖𝑏 they both referred back to the numerical values of (−
𝑏

2𝑎
,

√−∆

2𝑎
) where they stated that −

𝑏

2𝑎
 would 

be equal to zero. This suggested that they were able to conceive the quadratic formula quantitatively 

(Stevens, 2019) where they considered such as 
√−∆

2𝑎
 as the vertical distance from 0. This further suggested 

that they were able to both consider (−
𝑏

2𝑎
,

√−∆

2𝑎
) as a union of (−

𝑏

2𝑎
, 0) and (0, 

√−∆

2𝑎
) but also 𝑖 as a vector 

with pointwise representation (0, 1). This suggested that they conceived 𝑖 as a multiplicative object 

(Thompson et al., 2014), the union of two quantities. This was specifically evident in T4’s overcoming 

her difficulty in positioning 𝑖 on the Complex plane. In fact, whenever she thought that as points such 

as (0, 1) and (0, 3) referred to one of the roots of a quadratic equation, she recalled that she could use 

ordered pairs of real numbers to show 𝑖 as (0, 1). Though, the use of (0, √−1 ) in locating one root of 

𝑥2 + 1 =  0 might be a natural tendency on the part of learners. Taking this into consideration, while 

teaching quadratic equations, we argue for the simultaneous utilization of both algebraic and geometric 

meanings of the roots. Specifically, we recommend both teachers and teacher educators to provide 

opportunities for their students to consider the pointwise representation of the roots, as ordered pairs, 

on the horizontal axis in ℝ2.  

These findings suggest that understanding ℝ2 as a quantitative structure may support a clearer 

comprehension of the isomorphism between ℝ2 and the Complex plane. This is particularly significant 

when we consider T4’s difficulty, which indicates she may not have recognized that each ordered pair 

in ℝ2corresponds uniquely to a complex number, reflecting a one-to-one relationship between these 

two structures (Kontorovich et al., 2021). Given this, we advocate for creating opportunities for teachers 

and students to first conceptualize ℝ2 in a quantitative manner (Karagöz Akar, Zembat et al., 2022), 

treating points not just as static locations but as multiplicative objects (Saldanha & Thompson, 1998; 

Stevens & Moore, 2017; Thompson et al., 2017). This approach could enhance their ability to perceive 

the structural equivalence between the Cartesian plane and the Complex plane. 

Results also showed that T1 considered that the rule √𝑎. √𝑏 =  √𝑎. 𝑏 in real numbers also is 

valid for complex numbers, indicating a complex number bias (Karagöz Akar et al., 2023b; Kontorovich, 

2018a). In addition, although T5 could verify √−1√−1 as equal to -1, there was not enough data to 

conclude whether she could provide a valid explanation on that. On the other hand, even though T1 

could provide an explanation to resolve her difficulty about √−1√−1, her explanation further evidenced 

her complex number bias. Therefore, we comply with Nachlieli and Elbaum-Cohen (2021)’s suggestion 

and with an emphasis on the polysemy of the radical sign (Kontorovich, 2018a), and further recommend 

teacher educators and teachers to include a discussion about the importance of taking into consideration 

of 𝑖 as one of the square roots of −1, the principal root, while teaching and doing research on different 

forms of complex numbers. 
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Meaning of 𝒊 and 𝒃 as rotation and dilation operators  

In the case of multiplication with 𝑖, the results align with and expand on previous research 

(Nemirovsky et al., 2012; Soto-Johnson & Troup, 2014), showing that all participating teachers could 

interpret 𝑖 as a 90-degree rotation operator. This understanding enabled them to visualize the powers 

of 𝑖 on the complex plane. Notably, one teacher (T1) demonstrated a more advanced conceptualization 

of 𝑖𝑏 by recognizing both the rotation and dilation meanings. Specifically, she could view 𝑖 as the 

multiplier and 𝑏 as the multiplicand, and vice versa. Comparatively, T4’s reasoning suggested that she 

used repeated addition meaning of multiplication while interpreting 𝑖𝑏. T1s dual interpretation of 𝑖𝑏 

suggests a deeper understanding of the connection between the geometric and algebraic meanings of 

complex numbers while the repeated addition suggests a limited meaning, which we call for further 

investigation.  

Previous studies have indicated how physical environments, such as a classroom floor, can 

support pre-service teachers in understanding the multiplication of a complex number by 𝑖, leading 

them to interpret 𝑖 as a 90-degree rotation operator (Nemirovsky et al., 2012). However, Soto-Johnson 

and Troup (2014) found that while two undergraduate mathematics majors recognized that multiplying 

two complex numbers involves both rotation and dilation, their understanding remained incomplete. 

Although they could verbally explain the geometric meaning of this multiplication, they struggled to 

produce corresponding diagrams that connected the geometric interpretation with algebraic 

representations. Similarly, T1 had difficulty in recalling the knowledge that 𝑖, as a multiplier, could act 

on any real number 𝑏 by rotating it 90-degree counterclockwise. In addition, Tekin (2019) studied how 

a pre-service teacher developed a meaning for multiplication of complex numbers by focusing on both 

rotation and dilation separately and in-juxtaposition to each other. However, the participant in her 

study had already an understanding of multiplication of 𝑖 with a real number both as a rotation and 

dilation operator. Further research is needed to investigate how learners develop an understanding of 

multiplying 𝑖 by a real number from both the multiplier and multiplicand perspectives. Clinical design-

based research studies, such as teaching experiments, could provide deeper insights into how this dual 

meaning emerges. 

Considering operator meanings of rotation and dilation in multiplication is crucial, as research 

on rational number multiplication identifies two reasoning models: repeated addition and 

multiplicative reasoning. The repeated addition model is viewed as limited and elementary (Fischbein 

et al., 1985), while multiplicative reasoning involves understanding multiplication as "times as much" 

(Thompson & Saldanha, 2003). This advanced reasoning requires recognizing the product in relation to 

both the multiplier and the multiplicand (Karagöz Akar, Watanabe et al., 2022). In addition, previous 

studies indicate that pre-service teachers often struggle to grasp multiplication multiplicatively (e.g., 

Karyağdı, 2022). The findings from this study, particularly T1’s ability to interpret 𝑖 with both the 

multiplier and multiplicand meanings and T4’s repeated addition meaning, suggest the need to extend 

research on multiplication to the domain of complex numbers. Investigating how learners conceptualize 

the multiplication of 𝑖 with real numbers could reveal new reasoning models and clarify how such 

understanding develops. This line of inquiry is particularly important, as the teachers’ explanations 

imply that a dual interpretation of multiplication with 𝑖 may be rooted in a quantitative understanding 

of quadratic roots, their relationship with vectors, and a quantitative conceptualization of the Complex 

plane. 

In relation with the aforesaid discussion, results also point that at least two teachers, T1 and T4, 

conceived 𝑖𝑏 as a single entity quantitatively. This was evidenced in how T1 showed 𝑖𝑏 as points on the 

Complex plane by pointing to the algebraic form with regards to the quadratic roots and also in how 

she reasoned about 𝑖𝑏 by utilizing multiplication. Similarly, this was shown by T4’s reasoning about 𝑖𝑏 

as repeated addition of the unit vector, 𝑖. So, we argue that a conception of 𝑖𝑏 as a single entity 

quantitatively has also importance from an algebraic point of view. Algebraic structure sense includes 

seeing an algebraic expression as an entity and dividing an entity into sub-structures (Hoch & Dreyfus, 

2004) as well as “seeing the elements of a set as objects upon which the operations act” (Novotná et al., 
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2006, p. 249). So, a teacher’s conceiving 𝑖𝑏 as a single entity quantitatively suggests that quantitative 

reasoning might help study secondary teachers’ mathematical meanings (Thompson, 2016) for the 

algebraic structures (Smith III & Thompson, 2007; Thompson 2011). Thus, using the lenses of 

quantitative reasoning, we further propose research where many domains of secondary teachers’ 

algebraic knowledge are understudied and underspecified (Warren et al., 2016). This is further 

important since having a coherent picture of how mathematical ideas (Ball et al., 2008) and 

mathematical structures in the curriculum are connected is essential for teachers (Warren et al., 2016).  

As a final note, since this study solely focused on five in-service teachers’ conceptualizations of 

different meanings of 𝑖 and 𝑖𝑏, based on the aforementioned discussion, we propose to do further 

research on students’ and (preservice) mathematics teachers’ conceptualizations of different meanings 

of 𝑖 and 𝑖𝑏 with developing hypothetical learning trajectories in design based studies and with a larger 

number of participants. 
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Karagöz Akar, G., Belin, M., Arabacı, N., İmamoğlu, Y., & Akoğlu, K. (2024). Teachers’ knowledge of 

different forms of complex numbers through quantitative reasoning. Mathematical Thinking and 

Learning, 1-25. https://doi.org/10.1080/10986065.2024.2378910 

Karagöz Akar, G., Sarac, M. & Belin, M. (2023). Exploring prospective teachers’ development of the 

Cartesian form of complex numbers. Mathematics Teacher Educator 12(1), 49-69. 

https://doi.org/10.5951/MTE.2022.0034 

Karagöz Akar, G., Watanabe, T., & Turan, N. (2022). Quantitative Reasoning as a Framework to Analyze 
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