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Abstract  Keywords 

In addition to demonstrating the validity of mathematical 

propositions through proof, it also reveals functions such as 

explanation, discovery, systematization, and communication. It is 

essential to utilize all proof functions to transform it into a 

meaningful and profound mathematical activity in classrooms. 

Since mathematical proof and reasoning are social processes, 

teaching proof at the middle school level, particularly in 

demonstrating its importance and necessity, is influenced by 

certain norms. Therefore, teachers' consideration of proof's 

functions and the social and socio-mathematical norms supports 

students' reasoning processes. In this context, this study aims to 

reveal the functions of proof, social and socio-mathematical norms, 

and the relationship between these functions and norms within a 

learning environment that enables students to solve proof 

problems through interaction. The study participants comprised 

7th-grade students attending a public middle school in the Central 

Anatolia Region. Since uncovering proof functions and 

establishing norms require long-term interaction in an authentic 

learning environment, the teaching experiment method was 

adopted in this study. The findings were presented by analyzing 

the video and audio recordings and worksheets obtained from the 

12-week teaching process. The study results revealed that the 

classroom community developed shared norms regarding 

discussion, problem-solving, justification, and collaboration. These 

social and socio-mathematical norms guided students' 

participation in discussions and enhanced the quality of their 

contributions. Additionally, the study revealed that norms and 

functions of proof were intertwined in dialogues and that the 

norms across different themes and the functions of proof were 

interconnected. In the study, it was determined that the norms in 

the themes of discussion and collaboration mainly supported the 

communication function of proof, while the norms in the themes of 
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justification and problem-solving mainly supported the 

verification, explanation, discovery, and systematization functions 

of proof. It is recommended that studies focus on the social aspect 

of proof to demonstrate how social and socio-mathematical norms 

and the functions of proof support each other at different grade 

levels. 

Introduction 

Individuals who possess intense inquiry, research, and persuasion skills, who can construct and 

utilize knowledge based on their own experiences, and who are open to communication and 

collaboration have the potential to make a significant impact in shaping information and technology-

driven societies. In this context, the ability to use mathematics to solve real-life problems, communicate 

in the language of mathematics, construct valid arguments, and engage in mathematical reasoning 

holds great significance in today's societies.  

It is stated that mathematical reasoning forms the basis of mathematical competencies and that 

the lack of reasoning in mathematics teaching may lead to failure in the learning process (Battista, 2017), 

while mathematical proof is also defined as dependent on the reasoning process. For instance, Jahnke 

(2010) defines proof as a structure that involves reasoning based on induction and deduction, while the 

National Council of Teachers of Mathematics (2000) [NCTM] defines proof as a formal way of 

demonstrating specific forms of reasoning and justification. Similarly, Toker (2020) defines proof as a 

tool that can enhance mathematical thinking and discourse. It enables students to reason, justify their 

thoughts, make conjectures, draw inferences, test their ideas, and reach conclusions. Researchers who 

view mathematical proof as a process have utilized this process's stages in formulating definitions of 

proof (Baki, 2006; Dogan, 2015; Tall, 1998). When the studies of these researchers are examined, it is seen 

that the proof process consists of three intertwined stages: 1) Understanding the Problem, 2) Making 

Conjectures, and 3) Justification and Proof. Specifically, the proving process that can be used in school 

mathematics proof activities, along with the expected actions to emerge during this process, is presented 

in Figure 1: 

 
Figure 1. Stages of the Proof Process 
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Moreover, many researchers have proposed definitions of proof by emphasizing its socio-

cultural aspects (Almeida, 2003; Fredriksdotter, Nor´en, & Bråting, 2022; Hersh, 2009; Jones & Herbst, 

2012; Maher, 2009; Stylianides, 2007). For instance, Stylianides (2007) defines proof as a series of socially 

constructed claims whose validity depends on classroom norms. In this context, Stylianides emphasizes 

that for a mathematical argument to be considered proof, it should be built using statements accepted 

by the class without further justification, employ forms of argumentation appropriate to the class’s level 

and conceptual accessibility, and be communicated through multiple representations. Fredriksdotter et 

al. (2022) view proof as communicative justification practices that consist of students explaining of how 

they solved a mathematical problem and the arguments they use to support or refute that solution. 

Ayala-Altamirano and Molina (2021) highlight the social aspects of justification and proof by 

emphasizing the social process by which mathematical knowledge is explained, verified, and 

systematized. These definitions emphasize that the concept of valid proof can be reached through the 

interaction among community members, underline that proof is a social activity used in mathematics 

classrooms to communicate students' reasoning, and thus stress the necessity of considering proof as a 

social process. It can be stated that the functions of proof reflect this social process. 

The purpose a proof serves, its role in the classroom, and the meaning attributed to it by the 

person constructing the proof or interpreting an existing proof are explained through the functions of 

proof (Bell, 1976; De Villiers, 1990; Hanna, 2000). De Villiers (1990, 1999) states that proof has six 

functions: “verification,” “explanation,” “communication,” “discovery,” “systematization,” and 

“intellectual challenge.” The verification function refers to constructing a proof to demonstrate that a 

conjecture holds true in all cases, while the explanation function involves creating a proof to gain insight 

into why a conjecture is true (De Villiers, 1990). On the other hand, the communication function refers 

to the social interaction that involves sharing the results obtained through proof, discussing their 

validity and significance, and accepting or rejecting their correctness by different individuals (Herbst, 

Miyakawa, & Chazan, 2010). The discovery function refers to the discovery of new results and the 

generation of new ideas or conjectures, while the systematization function refers to the organization of 

results in a deductive system (De Villiers, 1990; Dennis, 2000; Hanna, 1983; Knuth, 2002). Intellectual 

challenge refers to proof in which a mathematician tests their intellectual endurance and creativity, and 

thus, the satisfaction derived from overcoming a mental challenge (De Villiers, 1999). On the other hand, 

Bartlo (2013) elaborated on five of De Villiers' functions of proof by defining them with their sub-

functions, as shown in Table 1: 

  



Education and Science 2025, Vol 50, No 222, 67-98 T. Y. Yılmaz & N. Yavuzsoy Köse 

 

70 

Table 1. Functions of Proof and Sub-functions (Bartlo, 2013) 

Functions of 

Proof 

Sub-functions of 

Proof 
Indicators of Sub-functions 

Verification  Conviction  Proof helps students overcome doubt by convincing them of the 

correctness of their conjectures. It allows them to validate their 

ideas and become autonomous learners.  

Confirmation When the class accepts the correctness of a proven statement, its 

validity is confirmed, and the statement becomes a shared 

agreement within the classroom community. 

Explanation Insight  A proof provides insight into why a mathematical phenomenon 

is true and how it works. 

Consequences  When a theorem is used to prove another theorem, seeing its 

results helps students learn about the concepts used in the proof. 

Communication  Form of 

discourse 

Proof enables the communication of mathematical results 

between teacher and student or student and student. 

Forum for debate  The proof provides an opportunity for critical discussions in 

which students can correct their mistakes. 

Discovery  Exploration  Proof facilitates the exploration of the consequences of 

conjectures, enabling the discovery of new results and allowing 

students to build upon their existing knowledge to learn new 

mathematical ideas. 

Analysis By analyzing proof, more general conclusions can be discovered. 

Systematization Inconsistencies  Proof helps students see inconsistencies and learn mathematics 

by responding to counterexamples and arguments. 

Connections Proof makes the relationships between concepts visible, 

facilitating the systematization of knowledge. 

Global 

perspective  

Proof reveals the axiomatic structure underlying a topic, from 

which other related properties can be derived, thereby 

contributing to the systematization of knowledge. 

Application  Proof helps students generalize their solutions, enabling them to 

apply them to different problems. 

Alternative 

systems 

Proof enables the development of new ways of thinking and the 

emergence of different deductive systems. 

Experiencing the functions of proof both supports students' understanding of proof and their 

participation in proof practices (Hemmi, 2010) and enables the reflection of the role that proof plays in 

mathematical science in mathematics classrooms, thereby paving the way for proof to become a more 

meaningful activity in these settings (Hanna, 1995; Knuth, 2002). It is stated that proof is used as a tool 

to convince a community of the validity of a mathematical statement and that, to be persuasive, it must 

align with the norms of that community (Harel & Sowder 2007; Zaslavsky, Nickerson, Stylianides, 

Kidron, & Winicki-Landman, 2012). Similarly, for the classroom community to validate the correctness 

of a claim, the proof must conform to the classroom’s social and socio-mathematical norms, and over 

time, proof influences and reshapes these norms. 

A community is defined as a group of individuals sharing common cultural values, and each 

classroom is described as a community where teachers and students come together, share common 

goals, discuss, and shape their roles (Sekiguchi, 2006). At this point, a microculture emerges in the 

classroom environment through the mutual interactions between teachers and students, distinguishing 

that classroom from others (Cobb, Stephan, McClain, & Gravemeijer, 2011; Levenson, Tirosh, & Tsamir, 

2009). In every classroom, the class members establish implicit and explicit understandings, which 

determine the behaviors concerning what each member does and values (Makar & Fielding-Wells, 
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2018). The mutual expectations that arise as a result of the communication and interaction of teachers 

and students in the classroom, the unwritten rules that describe the regularity in classroom activities, 

which are created jointly by teachers and students, which develop and change over time, are expressed 

as social norms (Cobb et al., 2011). These norms are constantly interpreted, transformed, or changed by 

teachers and students depending on the social interaction in the classroom. Socio-mathematical norms, 

on the other hand, are specific to the discipline of mathematics and are supported by the social norms 

of that community (Yackel & Cobb, 1996). Social and socio-mathematical norms are associated with 

student and teacher roles, beliefs about the general nature of mathematical activity, mathematical beliefs 

and values, and students' mathematical understanding (Cobb et al., 2011). Moreover, when 

implemented through inquiry-based and collaborative approaches in mathematics learning, it is known 

that these norms guide students' participation in mathematical discussions and enhance the quality of 

their contributions (Partanen & Kaasila, 2015). In this regard, norms play a crucial role in guiding 

students' participation in discussion-based classroom activities, encouraging them, and supporting their 

development.  

When the studies are examined, it is seen that along with the studies that address the nature 

and development of social and socio-mathematical norms in the classroom (McClain & Cobb, 2001), 

there are studies that address the relationship between social and socio-mathematical norms, the role of 

the teacher, the strategies used, and the classroom environments based on discussion and inquiry in the 

creation and development of norms in the classroom (Ozdemir-Baki & Kilicoglu, 2023; Sekiguchi, 2006). 

There are also studies examining the socio-mathematical norms formed in a classroom where gifted 

students participate in problem-solving activities (Çakır, 2021; Çakır & Akkoç, 2024) and the socio-

mathematical norms in a classroom with students with learning disabilities (Öksüz & Gürefe, 2021). For 

example, in Çakır's (2021) study, social and socio-mathematical norms were named under the headings 

of "Explanations," "Class Discussions," "Problem-Solving," "Problem Posing," "Valuing," "Inquiry,” and 

"Collaboration." The study addressed the expectations, awareness, and actions considered as evidence 

of norms through indicators defined for both teacher and student dimensions. Additionally, it has been 

observed that there are studies examining the teacher's pedagogical choices in discussion-based 

classroom environments designed to develop students' proof abilities, the socio-mathematical norms 

emerging in teacher and student actions, and emphasizing the social aspects of proof (Martin, McCrone, 

Bower, & Dindyal, 2005). This study differs from others as it deeply examines the proof functions that 

emerge during middle school students' proving processes, the norms that arise, and the relationships 

between proof functions and norms.  

In proof-focused studies conducted at the primary and middle school levels, it is emphasized 

that proof should be addressed across all grade levels (Cervantes-Barraza, Moreno, & Rumsey, 2020; 

Mudaly, 2007; Rocha, 2019). These studies state that being introduced to formal proof during high 

school contradicts the nature of proof and mathematics. Instead, transitioning from less formal and 

more intuitive approaches to formal proof is necessary, and the functions of proof and its social aspects 

should be emphasized. In recent years, mathematics education research has focused much on students' 

communication skills in constructing new knowledge (Hanna & Knipping, 2020). With the growing 

interest in the social aspects of learning mathematics, how students' interaction patterns with each other 

and the teacher in classrooms transform into social and socio-mathematical norms is paving the way for 

new research (Partanen & Kaasila, 2015). However, it is known that most studies on students' 

mathematical argumentation and proofs focus on individual cognitive processes (Campbell, Boyle, & 

King, 2020). It is also stated that one of the reasons students develop negative attitudes toward proof 

and struggle with proving is the lack of sufficient information about the role and meaning of proof, as 

well as the neglect of its social aspect (Mudaly, 2007). In this context, this study ensured that students 

participated in proof activities and experienced the functions of proof in a classroom with a high level 

of social interaction. Indeed, it is essential to create environments where students can defend and 

support the arguments they develop, evaluate and try to refute others' arguments, understand the 

construction of mathematical concepts and processes by making mathematical justifications in these 
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environments, and actively participate in this process (Chua, 2016; Yılmaz, 2021). Although the 

importance of proof and reasoning is emphasized in mathematics education, particularly in school 

mathematics, there appears to be a gap in the literature regarding middle school students' experiences 

with reasoning and proof, the meaning they attribute to mathematical proof, and the strategies they 

develop during the process of constructing mathematical proofs. Despite the emphasis that proof 

should be an integral part of mathematics education at all grade levels (Campbell et al., 2020; 

Fredriksdotter et al., 2022), it is noted that students are typically introduced to proof in high school, and 

the majority of studies on proof are conducted at the high school and undergraduate levels (Rocha, 

2019). It is a significant necessity to discuss the function, importance, and limitations of proof in 

mathematics classrooms and to find the most effective ways to utilize proof in mathematics education 

(Hanna, 2000).  

For all these reasons, in this study, the outcomes of students experiencing proof-making 

through group and classroom discussions in a classroom environment with high social interaction were 

wondered. For this purpose, the proof learning model “KARİDE” [Convince Yourself-Convince Your 

Friend-Convince Your Opponent-Evaluate], adapted from the stages of the proving process by Mason, 

Burton, and Stacey (2010) and supported by norms, was developed for use in proof activities. The proof 

was approached as a social process in the learning environment designed based on the KARİDE model. 

In this process, students were expected to encounter problem situations that were new to them, 

investigate the validity of these problems, and continuously justify their actions and statements while 

solving the problems. Furthermore, they were encouraged to discover the reasons behind their findings 

independently, communicate with one another using mathematical language, and carry out all these 

tasks within a specific systematic framework. In this learning environment, the study focused on the 

functions of proof that emerged, the social and socio-mathematical norms arising from the actions of 

students and teachers in the classroom microculture, and how the proof functions and norms supported 

each other, seeking answers to the following questions:  

• What functions of proof emerge in the learning environment designed based on the KARİDE 

model? 

• What social and socio-mathematical norms emerge in the learning environment designed based 

on the KARİDE model? 

• What is the relationship between the proof functions and the norms in the learning environment 

designed based on the KARİDE model? 

Method 

Research Design 

This study used a teaching experiment design to examine the functions of proof and the social 

and socio-mathematical norms that emerged during students' proving processes. A cycling approach is 

followed in the teaching experiment, consisting of consecutive teaching sessions, each consisting of a 

teaching agent (the teacher), one or more students, and the teaching recording to analyze the sessions 

(Steffe & Thomson, 2000). One of the most critical features of the teaching experiment, which helps to 

reveal new learning models, is the researcher assuming the role of the teacher (Steffe, 1991). In this 

study, a cyclical process consisting of consecutive teaching sessions was followed, the planning of each 

teaching session was guided by the analysis results of the previous session, and the researcher assumed 

the role of a teacher. 

Participants 

The study participants comprised 7th-grade students attending a public middle school in the 

Central Anatolia Region. In selecting the participants, qualitative research requirements were 

considered, and it was deemed necessary to choose participants who could provide access to rich data 

(Yalman & Uzungöz, 2021). For this reason, the criterion sampling method, one of the purposive 

sampling methods, was used to select participants. While purposive sampling is used to examine 
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situations that contain rich information that will illuminate the problem in the research process 

(Meydan, 2021), criterion sampling is the study of situations that meet a set of predetermined criteria 

(Yıldırım & Şimşek, 2006). Some of the criteria determined include 7th-grade students being in the 

transition phase between informal and formal proof, one of the researchers teaching mathematics to this 

class during the study period, the class being suitable for group work, and the students being willing to 

participate in the research. In line with these criteria, the study participants comprised 31 students from 

the same class, including 15 girls and 16 boys. Before starting the study, students signed a voluntary 

consent form, and parents signed a research permission form. At the beginning of the teaching practices, 

the class was divided into four small groups: Legendary Mathematicians, Citrus, Hardworking Bees, and 

Stars. Since the social and socio-mathematical norms of each classroom differed according to their 

previous experiences, the researcher-teacher took into account the microculture of this classroom based 

on her observations before starting the research in initiating and maintaining norms. 

Research Environment 

A multi-group seating arrangement suitable for individual and group work was adopted in the 

classroom where the teaching was implemented. The video cameras used during the activities in the 

classroom (one in front and one in the back) were placed so that they could see the students, the 

researcher, and the blackboard and did not distract the students' attention. In addition, audio recorders 

were placed on the desks of the groups to prevent data loss.  

Data Collection Tools and Data Collection Process 

Ethical approval was obtained from Anadolu University with the decision dated 23.01.2019 and 

numbered 54380210-050.99 for this study. Permission for data collection within the scope of the research 

was granted by the Eskişehir Provincial Directorate of National Education with the decision dated 

26.02.2019 and numbered 12377788-604.01.02-E.4196611. 

In the study, data were obtained from audio and video recordings of teaching practices, 

worksheets used in activities during small group discussions, and notes written in the teacher's diary. 

Since this study focuses on the connection between norms in teaching practices and proof functions, the 

findings from the 12-week teaching process are presented. Before starting the 12-week teaching 

practices, a two-lesson introductory session on proof was conducted to outline the characteristics of a 

mathematically valid argument, argumentation methods (such as direct proof or providing 

counterexamples), and forms of argument representation (such as algebraic, visual, or verbal 

representations) (Stylianides, 2007). In this lesson, the researcher-teacher presented the argumentation 

methods considered valid in this class and explained the mathematical foundations on which 

mathematical explanations and justifications should be based to be acceptable. In this context, it was 

stated that providing examples has a limited role in proving the characteristics of an argument that 

would be considered valid without justification (such as definitions) and that examples could be used 

to understand the problem (proposition) during the proof process. Additionally, the importance of 

using strategic examples was highlighted; however, it was underlined that trial-and-error with 

examples would not be accepted as a valid proof method in this classroom. It was explained that 

providing a counterexample is sufficient to demonstrate that a proposition is false. Throughout the 

lesson, students were required to explain why their conclusions were correct. In this way, the teacher 

established social and socio-mathematical norms such as providing acceptable mathematical 

explanations and justifications, presenting valid mathematical proofs, rejecting experimental 

verification as a valid proof, and offering different justifications for problems.  

Classroom activities were conducted over 24 lesson hours, scheduled as two 40-minute sessions 

(80 minutes) once a week for 12 weeks. In the selection of activities used in classroom sessions, the 

findings from the pilot study, the topics students were familiar with at the start of the implementation, 

the topics covered in previous academic years according to the curriculum, the topics included in the 

curriculum during the process, research on proof, expert opinions, and the alignment of prior and 

subsequent teaching sessions were taken into account. In this regard, activities were prepared 
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considering the students' grade level and the pilot study's findings. The proof methods addressed 

within the scope of reasoning techniques that students could conceptually comprehend are presented 

in Appendix 1. Among the presented activities, three involve number problems and propositions that 

require students to construct direct proofs, one is a proposition that must be proven using a 

counterexample, four are geometry problems requiring direct proofs, two are number problems that 

require proof by exhaustion, one involves evaluating four different arguments regarding the validity of 

a proposition, and one is a pattern problem. While presenting their proofs, students were allowed to 

use verbal, visual, or algebraic representations, taking into account the level of 7th-grade students.  

The stages of the KARİDE model, used in proof practices in the classroom and supported by 

norms, are presented in Figure 2:                                                

 
Figure 2. Stages of the KARİDE Model 

The KARİDE model, as shown in Figure 2, consists of four stages: a) Convince Yourself, b) 

Convince Your Friend, c) Convince Your Opponent, and d) Evaluate. The Convince yourself stage is the stage 

where individual solutions are made. During this process, students must examine the given problem 

(or proposition), attempt to understand it and formulate mathematical conjectures. The actions 

performed in this stage may vary from one student to another. Within the given time, some students 

may use specific examples only to understand the problem, some may generalize by identifying 

standard features in the examples, and some students may complete the process and make proofs. 

Convince your friend stage is the phase where small group discussions take place. In this process, students 

are expected to explain the validity of the conjectures they developed during their work along with their 

reasoning to their group members, and they are also likely to reach a mathematical conclusion that the 

class will evaluate in the next stage. Throughout the Convince your friend stage, the teacher moves 

between groups, examining students' solution approaches and, when necessary, asking questions to 

help students deepen their thinking. It also encourages each group member to share their solutions with 

their peers, explain their ideas with reasoning, collaborate, ask each other about unclear points, listen 

to others until they finish speaking, and convince each other. Thus, it reinforces the formation of 

classroom norms. Convince your opponent stage is where the arguments developed by each group are 

discussed in the classroom to determine whether they constitute valid proof. In the Convince your 

opponent stage, the teacher asks students to pose questions to the person presenting the solution on the 

board, such as "How do you know this is correct?" "Can you justify why this claim is true?" "Can you 

explain why this is correct?" and "How can you be sure this is correct?" The teacher also guides students 

by asking similar questions and managing the classroom discussion. After each group explains the 
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validity of its conjectures the reasoning, the teacher summarizes each group's solution so that the entire 

class can understand it. The teacher asks questions to clarify and make the presented ideas more 

understandable, repeating key points. Thus, it enables the presented explanations to be evaluated by 

other students. After each solution, the teacher repeats these actions, contributing to the continuity of 

class discussions. During the discussions, all questions from the class are received and answered; each 

group defends its arguments and attempts to refute the opposing group's arguments. The final stage of 

the model is the Evaluation stage. In this stage, the teacher evaluates the arguments developed by the 

groups, and the class decides upon a collective proof. During the implementation process, the stages of 

this model were followed in each lesson, with approximately 15 minutes allocated for the Convince 

yourself stage, 25 minutes for the Convince your friend stage, 30 minutes for the Convince your opponent 

stage, and 10 minutes for the Evaluate stage. 

Data Analysis 

Since the primary tools for collecting data on the teaching experiment were observation and 

video recordings of the teaching episodes, the collected data were analyzed following each teaching 

episode. With the findings obtained from the analysis, both the development of the students and the 

planning of the following teaching were made. Two critical levels of analysis were employed in the 

analysis of the teaching experiment: continuous analysis and retrospective analysis (Tanışlı & 

Yavuzsoy-Köse, 2013). In the ongoing research analysis, data obtained from teaching sessions were 

analyzed weekly while the teaching process was ongoing. In this context, the researchers reviewed the 

recorded videos and audio recordings at the end of each lesson during the teaching experiment to 

evaluate the previous teaching session, identify its shortcomings, and plan the next session accordingly. 

They thoroughly discussed the results obtained, their field notes, and observations of the classroom 

environment and tested assumptions in detail, making adjustments as deemed necessary. Accordingly, 

they made decisions by creating new conjectures for the next lesson. With this ongoing analysis, a 

teaching session included control of the predictions obtained from the previous session so that the 

research gained a non-static structure that could be changed and renewed according to the participants' 

learning due to the teaching experiment's structure (Steffe & Thomson, 2000). In the retrospective 

analysis, all collected data were examined holistically. The social and socio-mathematical norms that 

emerged during the study were defined based on descriptions commonly used in the mathematics 

education literature; in alignment with the theoretical framework of the research, closely related norms 

were consolidated under a single theme to ensure coherence. To facilitate the analysis and reveal the 

relationship between norms and functions, four norm themes, "Discussion," "Problem-Solving," 

"Justification," and "Collaboration," were developed, inspired by Çakır (2021) and a label (SN: Social 

Norm, SMN: Socio-mathematical Norm) was used for each norm. The norms under these themes were 

structured as follows: "It is expected that the classroom community shares their ideas (SN1)," "It is 

expected that different solutions to problems are proposed (SN2)," "It is expected that thoughts are 

explained and justified (SN3)," and "It is expected that solutions are collaboratively developed (SN4)." 

Each norm under the themes was accepted as a fundamental norm initiating its sub-norms, and 

social and socio-mathematical sub-norms related to this fundamental norm were placed under it. For 

example, the social norm " It is expected that the classroom community shares their ideas. (SN1)" was 

adopted as the fundamental norm for initiating classroom discussions. The norms "Ensuring equal 

participation of students in the lesson (SN1a)," "Asking questions about unclear points during 

discussions (SN1b)," "Listening to the speaker until they finish speaking (SN1c)," "Sharing thoughts with 

group members and the class (SN1d)," "Presenting counterarguments by defending one's view (SN1e)," 

and "Refuting a peer's conjecture by defending one's view (SMN1e)" were identified as sub-norms 

associated with this fundamental norm. Although the norms were presented under different themes to 

facilitate analysis and provide a holistic view of the findings, the foundational norms are interrelated, 

and the sub-norms are also connected to other sub-norms. During coding, similar labels were used for 

social and socio-mathematical norms linked to the same foundational norm and supported each other's 

development. For example, the social norm "Presenting counterarguments by defending one's view" 
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was labeled as "SN1e," while the socio-mathematical norm "Refuting a peer's conjecture by defending 

one's view," which supports the development of this social norm, was labeled as "SMN1e." In the study's 

findings, the sample dialogues that reflect the norms within a specific theme included only the norms 

of the theme being addressed. No norms outside those already present in the literature emerged during 

the study. Norms determined in teaching practices are presented in Table 2: 

Table 2. Norms Determined in Teaching Practices 

Theme Norms Sub-Norms 

Discussion  It is expected that 

the classroom 

community shares 

their ideas (SN1) 

Ensuring equal participation of students in the lesson (SN1a)  

Asking questions about unclear points during discussions 

(SN1b)  

Listening to the speaker until they finish speaking (SN1c)  

Sharing thoughts with group members and the class (SN1d)  

Presenting counterarguments by defending one's view (SN1e)  

Refuting a peer's conjectures by defending one's view 

(SMN1e)  

Problem-Solving It is expected that 

different solutions 

to problems are 

proposed (SN2) 

Providing different justifications for problems (SMN2a)  

Using algebraic solution methods to make solutions more 

generalizable (SMN2b)  

Justification It is expected that 

thoughts are 

explained and 

justified (SN3) 

 

Providing acceptable mathematical explanations and 

justifications (SMN3a)  

Presenting a valid mathematical proof (SMN3b)  

Rejecting experimental verification as a valid proof (SMN3c)  

Forming counterarguments by defending one's view (SN3d)  

Collaboration It is expected that 

solutions are 

collaboratively 

developed (SN4) 

Reaching a common conclusion (SN4a) 

Forming a collective proof for the class (or group) (SMN4a) 

Additionally, to analyze the functions of proof in instructional practices, Bartlo’s (2013) 

framework of proof functions was used as a basis, and functions, sub-functions, and sub-function 

indicators were developed. For example, the "Verification" function was labeled as "D," and the sub-

function "Conviction" was labeled as "D1." In this study, it was observed that two sub-functions present 

in the literature did not emerge during the research. It is thought that the reason why the sub-function 

"Exploration," which is one of the sub-functions of the "Discovery" function, and the sub-function 

"Alternative systems," which is one of the sub-functions of the "Systematization" function, did not 

emerge in this study is due to the grade level of the students and the proof problems selected by this 

grade level. Similarly, since this study was conducted at the middle school level, the "Intellectual 

Challenge" function from De Villiers' (1999) proof functions was not included. The functions and sub-

functions that emerged in this study are presented in Table 3.  
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Table 3. Functions of Proof Determined in Teaching Practices 

Functions of 

Proof 

Sub-functions of 

Proof 
Indicators of Sub-functions 

Verification (D) Conviction (D1) Ensuring that the student is convinced of the correctness of his 

(her) conjecture through the solution he (she) has provided. 

Confirmation (D2) Ensuring the confirmation of a statement by the class (group). 

Explanation (A) Insight (A1) Ensuring the justification of why the conjecture is correct. 

Consequences (A2) Ensuring that the results of the theorem used in the proof are 

observed and that information about the concepts used in the 

proof is obtained. 

Communication 

(İ) 

Form of discourse 

(İ1) 

Ensuring communication between the teacher and the student 

or between students. 

Forum for debate 

(İ2)  

Ensuring the creation of a forum for debates. 

Discovery (K) Analysis (K1) Ensuring the discovery of more general results through 

analyzing a given proof. 

Systematization 

(S) 

Inconsistencies 

(S1) 

Ensuring that inconsistencies are revealed through 

counterexamples. 

Connections (S2) Ensuring the use of connections between concepts while 

constructing a proof. 

Application (S3) Ensuring that solutions are generalized to be applied to a 

similar problem. 

In the tables prepared to illustrate the relationships between norms and functions, the frequency 

of coding a norm and a function together in the in-class dialogs in the 12-week teaching experiment was 

considered. For example, the SMN3a norm and A1 function were coded together in the coding. 

However, some norms and functions needed to be coded together or coded more. Nevertheless, the 

weeks in which norms and functions were coded together are shown as upper indices in the tables. For 

example, the weeks in which the A2 function of proof and the SN1a social norm are coded together are 

indicated as ✓3,5,8,10,11,12. 

Validity and Reliability 

At every stage of this research, the criteria determined by various researchers (Creswell, 2013; 

Merriam, 2018; Miles & Huberman, 1994; Yıldırım & Şimşek, 2006) were taken into consideration to 

ensure validity and reliability in qualitative studies. In the research, more than one data collection 

method was used, long-term interaction was established with the participants, expert review was used 

in data collection, data analysis, findings, discussion, and conclusion writing, and direct quotations 

were included in the findings. A pilot study was conducted before the research, and in-class activities 

were organized based on the pilot study results. The researchers coded all teaching activities separately, 

and the inter-coder reliability coefficient (Miles & Huberman, 1994) was calculated as 89%. Then, the 

similarities and differences in the codings made independently were compared, and the reasons were 

discussed. The revised version of the codings was presented to a different field expert, and the codings 

were finalized by making arrangements in line with their opinions. 
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Findings 

In this section of the study, sample dialogues highlighting the norms and functions observed 

throughout the teaching experiment in the classroom along with the connections between these norms 

and functions, are presented. 

Norms and Functions Emerging in Teaching Practices 

In the learning environment designed according to the KARİDE model, it was observed that the 

researcher-teacher played an active role in initiating classroom norms, guided these norms and that 

students also contributed to the development of these norms throughout the teaching experiment. It 

was observed that the researcher-teacher reminded the students of the norms more frequently in the 

first weeks and asked them to adhere to them. In the following weeks, the students maintained the 

continuity of the norms without the needing to be reminded. To make the relationships between the 

norms themselves and their connections with functions more visible, the norms were interpreted under 

four themes: “Discussion,” “Problem-Solving,” “Justification,” and “Collaboration” by data analysis 

framework.  

Norms in the Discussion Theme and Their Connection with the Functions of Proof 

The norms examined under the theme of "Discussion" and the functions supported by the 

development of these norms are presented in Table 4: 

Table 4. Norms in the “Discussion” Theme and Their Connection with the Functions 

 NORMS IN THE DISCUSSION THEME 

It is expected that the classroom community shares their ideas (SN1) 

Functions of Proof SN1a SN1b SN1c SN1d SN1e SMN1e 

Verification (D) D1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

D2 ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

Explanation  

(A) 

A1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

A2 ✓3,5,8,10,11,12  ✓3,5,8,10,11,12 ✓3,5,8,10,11,12   

Communication 

(İ) 

İ1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

İ2 ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

Discovery (K) K1   ✓10 ✓10   

Systematization 

(S) 

S1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

S2   ✓3,5,8,10,11  ✓3,5,8,10,11 ✓3,5,8,10,11 

S3   ✓4,5,7,8,10,12    

As seen in Table 4, the norm "It is expected that the classroom community shares their ideas 

(SN1)" is a fundamental norm under this theme, initiating and organizing classroom discussions while 

supporting other social and socio-mathematical norms. The different norms under this theme have been 

identified as follows: “Ensuring equal participation of students in the lesson (SN1a),” “Asking questions 

about unclear points during discussions (SN1b),” “Listening to the speaker until they finish speaking 

(SN1c),” “Sharing thoughts with group members and the class (SN1d),” “Presenting counterarguments 

by defending one's view (SN1e),” and “Refuting a peer's conjecture by defending one's view (SMN1e).” 

To reflect the norms under this theme, a cross-section of the small group discussions of the Legendary 

Mathematicians group during the third week, involving a geometry problem requiring direct proof 

(Appendix 1), is presented below as an example.  

Teacher: Now the convince your friend phase has started. You should share the solution you 

worked on individually with your group members. Please explain your ideas along with the 

reasoning behind them. Ask each other about anything you do not understand, and convince one 

another that your solution is correct. You will now work on creating a common solution for your 

group, so please listen to your friends until they finish speaking. Then, we will move on to the 
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"convince your opponent" phase. By the way, I want a different spokesperson to be on the board 

every week. (SN1,SN1a,SN1b,SN1c,SN1d,D1,D2,A1,İ1,İ2) 

… 

Student 1: Did you measure it? Mine came out weird; for example, in the question, it says 6 cm 

here, but when I measured it, it came out something like 3. (SN1,SN1a,SN1b,SN1c,İ1,İ2) 

Student 2: I measured more than 3 and then I stopped measuring. I did it my own way and 

found D to be 60o. Everyone, tell me what you did. (SN1,SN1a,SN1c,SN1d,D1,İ1,İ2) 

… 

Student 2: Yes, that's already an equilateral triangle. How did you solve it? 

(SN1,SN1a,SN1c,SN1d,D1,D2,İ1,İ2) 

Student 3: I found angle D to be 24° and angle DAC to be 

36°.(SN1,SN1a,SN1c,SN1d,D1,İ1,İ2) 

Student 2: How did you find it like that? Now look, this is already a right triangle. The teacher 

gave 60o here and 30o here. This is the right angle, 180o. If we subtract 60 from 180, we get 120o, 

so what you said is refuted. (SN1,SN1a,SN1b,SN1c,SN1d,SN1e,SMN1e,D1,A1,İ1,İ2,S1,S2) 

Student 3: I got it mixed up. (İ1,İ2) 

...  

Student 1: Do you remember how we used to do something with the base and height? In an 

equilateral triangle, if this side is 6, DC also seems to be 6 to me. When you draw the height, it 

divides the triangle right in the middle. I just pulled it now; with a base of 6, it became 3 cm and 

3 cm. (SN1,SN1a,SN1c,SN1d,D1,A1,A2,İ1,İ2,S2) 

… 

Student 2: Now look, I just noticed something. It is an isosceles triangle, so these sides must be 

equal, which means they are both 6. (SN1,SN1a,SN1c,SN1d,D1,A1,A2,İ1,İ2,S2) 

Student 3: So, are we saying it's 6 cm because this is an isosceles triangle? 

(SN1,SN1a,SN1b,İ1,İ2) 

Student 2: Yes, actually, you find the isosceles triangle like this: this angle is already given as 

30° in the question, and we also calculated angle D as 30o. Since both are 30o, it’s isosceles. That’s 

why these sides are equal. Do you remember last year when Gözde teacher drew arrows across 

the isosceles triangle (to show the equality of the sides opposite the equal angles)? Those sides 

were equal. Here, if we draw arrows for the 30o angles since AC is 6 cm, DC must also be 6 cm. 

Is anyone not convinced? (SN1,SN1a,SN1c,SN1d,D1,D2,A1,A2,İ1,İ2,S2) 

Student 3: Oh yes, how did I not see that? It’s so simple. Now, let’s explain it again. (D2,İ1,İ2) 

… 

The example dialogue provided above shows that throughout the group discussion, students 

tried to understand each other, asked each other about unclear points, and tried to convince each other. 

It is also seen that each student in the group is aware of the need to share their ideas and participate in 

the discussion, and the speaker is listened to until they finish speaking. These situations indicate that 

the group has agreed on the norms under the discussion theme (SN1,SN1a,SN1b,SN1c,SN1d). In the 

discussion, it was observed that one student determined the measure of angle D as 24° and the measure 

of angle DAC as 36°, upon which a groupmate presented a counterargument by defending their view 

and refuting their peer's conjecture (SN1e,SMN1e). This dialogue is also associated with the sub-

function of the systematizing function of proof to reveal inconsistencies and relationships (S1,S2). It is 

observed that, through the proof they constructed, the students were convinced that the measure of 
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angle D is 30° and the length of line segment DC is 6 cm without needing any external authority (D1,D2). 

Furthermore, a student made the conjecture that triangle ADC is an isosceles triangle and explained the 

validity of this conjecture along with its reasoning to their peers (A1). It is also observed that the students 

used the properties and theorems they knew about triangles in their proofs and recognized their 

consequences (A2). As observed, the fact that students are convinced of the validity of their conjectures 

through their solution and the need to justify why their conjectures are correct for the solution to be 

validated demonstrate that proof’s verification and explanation functions support each other.  

Furthermore, the fact that the students in the class reached a common agreement during the 

teaching experiment that they should share their ideas (SN1) reveals their form of discourse, creates a 

forum for debate (İ1, İ2), and highlights the connection between the norms under the discussion theme 

and the communication function of proof. Additionally, throughout the teaching experiment, it was 

observed that for the students to be convinced of the proof's validity and confirm its validity (D), it was 

necessary to justify why it was correct (A). The emergence of these functions also depends on the 

students sharing their ideas and convincing one another. This situation highlights the connection 

between the norms under the discussion theme and the verification, explanation, and communication 

functions of proof. The findings from the 12-week teaching experiment demonstrate that the norms 

under the discussion theme and the functions of proof are intertwined and interconnected within the 

dialogues.  

Norms in the Problem-Solving Theme and Their Connection with the Functions of Proof  

The norms examined under the “Problem-solving” theme and the functions supported by the 

development of these norms are presented in Table 5: 

Table 5. Norms in the “Problem-Solving” Theme and Their Connection with the Functions 

 NORMS IN THE PROBLEM-SOLVING THEME  

It is expected that different solutions to problems are proposed (SN2) 

Functions of Proof SMN2a SMN2b 

Verification (D)  D1 ✓All weeks ✓All weeks 

 D2 ✓All weeks ✓All weeks 

Explanation (A)  A1 ✓All weeks ✓All weeks 

 A2 ✓3,5,8,10,11,12  

Communication (İ)  İ1 ✓All weeks ✓All weeks 

 İ2 ✓All weeks ✓All weeks 

Discovery (K)  K1 ✓10  

Systematization (S)  S1   

 S2 ✓3,5,8,10,11 ✓3,5,8,10,11 

 S3 ✓4,5,7,8,10,12  

As presented in Table 5, the norm "It is expected that different solutions to problems are 
proposed (SN2)" is considered the fundamental norm under this theme, as it initiates and supports the 
socio-mathematical norms of "Providing different justifications for problems (SMN2a)," and "Using 
algebraic solution methods to make solutions more generalizable (SMN2b).” In the first weeks of the 
proof activities, the researcher-teacher facilitated the use of different representations in the classroom 
to help students recognize that there could be multiple solution methods and allowed for the validity 
of the result to be demonstrated through various justifications and approaches. In response to the 
teacher's expectation of providing different solutions to problems, students, being aware of this 
expectation, attempted to offer different justifications for problems even when not explicitly requested 
by the teacher and encouraged one another to use algebraic solution methods. These findings indicate 
that the group agreed on the norms under the problem-solving theme (SN2,SMN2a,SMN2b). A cross-
section of the small group discussions of the Legendary Mathematicians group during the 12th-week 
pattern problem (Appendix 1) and the solutions provided by the students are presented below as an 
example of classroom dialogue reflecting the norms under this theme:  
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Image 1. Small Group Discussion of the Legendary Mathematicians Group in the Twelfth Week 

Student 1: Here’s what I did. I separated the three tiles on each side. I said there’s as much gray 

above and below the white tiles as the white tiles themselves. That’s why I first wrote 2x. Then, 

since three more tiles were needed to cover the sides, I added +6. (D1,D2,A1,İ1,İ2) 

Student 2: Mine is the same as yours; we have the same formula. This part will be n, meaning 

there will be n both at the top and bottom and 3 on each side, so 3 and 3 make 6. That’s 2x+6 or 

2n+6. When it’s 60, it comes out to 126 anyway. (D1,D2,A1,İ1,İ2) 

… 

Student 1: But look, we’re adding +6, so what Nefise did seems strange. 

Student 3: Yours is correct, but mine is also accurate. Do you know why? Look, for however 

many white tiles there are, we take two more than that, which accounts for the grays above and 

below. Then, we add the remaining 2. (SN2,SMN2a,D1,D2,A1,İ1,İ2) 

Student 4: There are two correct perspectives here. We examined it by separating the sides, while 

you considered the entire top and bottom. (SN2,SMN2a,D1,D2,A1,İ1,İ2) 

Student 3: Yes, you divided it into parts like that, while I divided it this way. You looked at it 

by directly removing the 6 tiles. (SN2,SMN2a,D1,D2,A1,İ1,İ2) 

Student 2: Actually, I just realized that Nefise's method and ours are the same, and both are 

correct. Because she did (n+2)×2, where the 2 multiplies both terms, making it 2n+4, and then 

she adds 2, so it becomes 2n+6. That means both are correct. (SN2,SMN2a,D1,D2,A1,İ1,İ2) 

… 

In the discussion, it is observed that the students analyzed the shape in various ways and 

discovered different generalization methods. In the initial part of the discussion, although there was 

disagreement among the students, it was determined that when they analyzed the shape differently, 

they found the general rule equivalent. As observed in the discussion, the student’s pursuit of different 

solutions and their effort to justify how the methods they used in their solutions differed from one 

another indicates that the classroom community accepted this norm (SN2,SMN2a). At the same time, 

the emergence of these norms in the students' actions, along with their attempts to convince their group 

members of the validity of their conjectures by providing justifications for how their solutions differed 

from one another, points to the verification, explanation, and communication functions of proof 

(D1,D2,A1,İ1,İ2). 

Additionally, the social norm "It is expected that different solutions to problems are proposed 

(SN2)" initiates and supports the development of the socio-mathematical norm "Using algebraic 

solution methods to make solutions more generalizable (SMN2b).” Below is the small group discussion 

of the Legendary Mathematicians group during the 10th week of the teaching experiment, where they 

were required to perform a direct proof for a geometry problem (Appendix 1), and their solutions, 

shown in Image 2, reflect this norm. In this discussion, a group member told Student 2 they were using 

an example to prove the statement. The student explained that these numbers were used solely to show 
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the equality of the angle measures and that they would reach the same result regardless of which angle 

they used. These findings indicate that the student was using a generalizing example. Furthermore, it 

was observed that, despite their peers presenting counterarguments to the student who used numerical 

values to demonstrate the equality of side lengths. The student employed algebraic methods to make 

their solutions more generalizable and successfully convinced their peers 

(SMN2b,D1,D2,A1,A2,İ1,İ2,S1,S2).  

 
Image 2. Small Group Discussion of the Legendary Mathematicians Group in the Tenth Week 

… 

Student 2: Sure, you can write any number you want. I just showed it so you can see which 

angle equals which. Take any numbers that add up to 90. For example, if we assign 5 to one of 

these parts. It’s already given in the question that these are equal, so this part will also be 5. 

Since this is a rectangle, the opposite sides will also be 5 and 5. So, if this side is x, then this side 

is also x. If this side is y, then the opposite side is also y. It’s already given in the question. I think 

if this side of the inner quadrilateral is f, then the opposite side is also f. 

(SN2,SMN2a,SMN2b,D1,A1,A2,İ1,İ2,S2) 

… 

Student 1: Wouldn't this count as a trial-and-error method? 

Student 2: No, it wouldn’t count. We only used numbers to show which angles are equal… 

Student 4: But you assigned numbers again. 

Student 2: No, I assigned numbers to show you that it’s a rhombus... because all these sides are 

the same in the triangles. Look, I won’t assign numbers this time for you. Now, all of these are 

y, and all of these are x because this is a rectangle. These triangles are all congruent. Since this 

angle is 20, this one is also 20, and the remaining angle is 140, and the opposite angles are the 

same. These angles here are 70. Therefore, the remaining sides of these triangles must also be 

equal. We’ve written the angles, and this is a rhombus. 

(SMN2a,SMN2b,D1,A1,A2,İ1,İ2,S1,S2) 

Student 1: Alright, I’m convinced.(D2) 

… 

In the dialogue above, it is observed that the students proved that quadrilateral EFGH is a 

rhombus by utilizing the congruence of the triangles formed at the corners of the rectangle. Through 

their proof, they convinced themselves of the validity of their conjectures without requiring any external 

authority. The group approved the proof, and the students explained the correctness of their conjectures 

along with the underlying reasons (D1,D2,A1,A2,İ1,İ2,S2). Additionally, in the same week, the Citrus 

group demonstrated the congruence of the triangles by utilizing the symmetry line of the rectangle with 

a different solution method, as presented in Image 3 and the class also approved this solution: 
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Image 3. Class Discussion of the Citrus Group in the Tenth Week 

It is observed that the students utilized various previously learned concepts, such as the 
definition of a right triangle, the definition of a rectangle, the definition of a right angle, the properties 
of a rhombus, and the symmetry line, by connecting them in this proof (S2). In the proof activities, 
students were enabled to gain insight into why a mathematical statement is true and to acquire more 
profound knowledge about the properties they used in the proofs by observing their consequences 
(A1,A2). 

In the 10th week evaluation phase, the teacher asked, “Now, if this is understood, I will ask one 
more question. What can you say about the quadrilateral formed when we connect the midpoints of the sides of a 
square?” Many students offered different justifications. As presented in Image 4-a, a student 
demonstrated that the triangles formed at the corners are isosceles and proved that the resulting 
quadrilateral is a square. In this problem, students generalized the solution method they found and 
used it in different problems they encountered, which served the Application (S3) sub-function of the 
systematization function: 

  
a b 

Image 4. Evaluation Phase in the Tenth Week 

After the teacher expanded the problem, it was observed that one student, as presented in Image 

4-b, generalized that the quadrilateral formed at the center by connecting the midpoints of the sides of 

the resulting square would also be a square. Different justifications were presented when the teacher 

gave the floor to the class. The dialogue is provided below: 

Student 1: Teacher, I want to ask you something: if we were to connect the midpoints of the sides 

of this square as well, would it also form a square? (K1) 

Teacher: Yes, what do you say? Would that be a square, too, he says? 

Student 2: It would be a square. Since the previous one was also a square derived from within a 

square, this one would also be a square. (SN2,SMN2a,D1,D2,A1,A2,İ1,İ2,K1,S2) 

Student 3: It will be square because the triangles on the sides will be isosceles again. (SN2, 

SMN2a,D1,D2,A1,A2,İ1,İ2,K1,S2) 

Teacher: This would go on infinitely, wouldn't it? Even if we draw inside it again and connect 

the midpoints of the sides, it would also form a square.  
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The analysis of proof facilitated the discovery of more general results and served the discovery 

function through the sub-function of Analysis (K1). In this class, the norm of presenting different 

solutions to problems has fostered a rich discussion environment by encouraging the application of 

students' generalized solutions to similar problems (S3) and making discoveries (K1). 

Throughout the teaching experiment, students' ability to provide different justifications for 

problems (SMN2a) required them to reason why their conjectures were correct (A), supporting the 

explanation function of proof. At the same time, it supported the verification function of proof by 

enabling the class to be convinced of the correctness of these conjectures (D). Additionally, students' 

efforts to establish connections between different mathematical concepts (S2) while presenting their 

solutions to provide various justifications supported the systematization function. The emergence of 

these functions also depended on students sharing their ideas and communicating (İ).  

Norms in the Justification Theme and Their Connection with the Functions of Proof 

The norms examined under the “Justification” theme and the functions supported by the 

development of these norms are presented in Table 6: 

Table 6. Norms in the “Justification” Theme and Their Connection with the Functions 

 NORMS IN THE JUSTIFICATION THEME  

It is expected that thoughts are explained and justified (SN3) 

Functions of Proof SMN3a SMN3b SMN3c SN3d 

Verification (D) D1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

D2 ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

Explanation (A) A1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

A2 ✓3,5,8,10,11,12 ✓3,5,8,10,11,12   

Communication (İ) İ1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

İ2 ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

Discovery (K) K1 ✓10 ✓10   

Systematization (S) S1 ✓All weeks ✓All weeks ✓All weeks ✓All weeks 

S2 ✓3,5,8,10,11 ✓3,5,8,10,11   

S3 ✓4,5,7,8,10,12 ✓4,5,7,8,10,12   

As presented in Table 6, the norm " It is expected that thoughts are explained and justified 

(SN3)" is considered the fundamental norm under this theme, as it initiates and supports the socio-

mathematical norms of “Providing acceptable mathematical explanations and justifications (SMN3a),” 

“Presenting a valid mathematical proof (SMN3b),” “Rejecting experimental verification as a valid proof 

(SMN3c),” and “Forming counterarguments by defending one's view (SN3d).” 

To reflect the norms within this theme, the class discussion from Week 5 involving the Stars 

group, where they were required to directly prove a geometry problem (Appendix 1), is presented 

below. It was determined that the group correctly divided the polygons into triangles, as shown in 

Image 5, and calculated the interior angle measures of the polygons using the sum of the interior angles 

of the triangles. A cross-section of the class discussions of the Stars group is presented below: 
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Image 5. Class Discussion of the Stars Group in the Fifth Week 

Group Spokesperson: Teacher, we divided this rectangle into triangles, resulting in two 

triangles; the sum of the angles in a triangle is 180°. We added 180 and 180, which gave us 360. 

So, teacher, when we did the same for others, we discovered something: if you take the number 

of vertices, subtract two, and multiply it by 180, you get the sum of the interior angles. For 

example, a 30-sided polygon has 30 vertices; subtracting two gives 28, and multiplying 28 by 

180 gives the result. For an n-sided polygon, it becomes (n-2) × 180. 

(SN3,SMN3a,SMN3b,D1,D2,A1,A2,İ1,İ2,S2) 

Teacher: Why did you divide it into triangles? Where did you come up with it? 

Group Spokesperson: Because we knew that the angles of a triangle add up to 180. At first, I 

divided the pentagon into a triangle and a quadrilateral. The triangle's angles were 180, and the 

quadrilaterals were 360, which added up to 540. But then I thought, for example, if it were a 

decagon, and I divided it into a triangle and a nonagon, I wouldn't know the angles of the 

nonagon. So, I decided to divide everything into triangles. 

(SN3,SMN3a,SMN3b,D1,D2,A1,A2,İ1,İ2,S2) 

… 

Student 2: So, how can you be sure that (n-2).180 is correct for all polygons? 

Group Spokesperson: In all polygons, the number of triangles formed is always equal to two 

less than the number of sides. Since the sum of the interior angles of a triangle is 180, we multiply 

that by 180 to get the result. (SN3,SMN3a,SMN3b,D1,D2,A1,A2,İ1,İ2,S2) 

In this discussion, it was observed that the spokesperson grounded their explanations and 

justifications on mathematical principles in response to the teacher asking why they divided the shape 

into triangles and Student 2 requesting justification for why their generalization is valid for all polygons 

(SN3,SMN3a). Aware of the expectation for justification, students' acceptable mathematical 

explanations regarding their solutions and the concepts they used support the proof's explanation (A) 

function. At the same time, students' efforts to establish connections between the properties of different 

polygons while supporting justifications the connections sub-function (S2) of the systematization 

function of proof. It is observed that both the group and the class verified through this proof that the 

sum of the interior angle measures of a polygon is (n-2).180 (D1,D2). Furthermore, it emerges as an 

established norm in small group and class discussions within this classroom that presenting a valid 
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mathematical proof is necessary, experimental verification is not accepted as a valid proof, and students 

present counterviews while defending their view (SMN3a,SMN3b,SMN3c,SN3d). For instance, it was 

observed that a student from the Citrus group attempted to find a multiplicative relationship between 

the sums of the interior angle measures of polygons for the same problem, but the student's group 

members did not accept this numerical approach. The student's solution in the group discussion is as 

follows: 

… 

Student 1: Look, I found something. I think we should present this on the board as well. Now, 

with the formula you saw, you calculated the sum of the angles as 360 for a quadrilateral, 540 

for a pentagon, 720 for a hexagon, and 900 for a heptagon, right? You’re always adding 180. I 

wrote them all down in order. Now, for the quadrilateral, it’s 4 times 90; for the pentagon, it’s 6 

times 90; for the hexagon, it’s 8 times 90. So, it increases by 2 times each time. 

Student 2: We already found something general. You’re still working with examples. 

(SMN3c,SN3d) 

… 

In the same group, a student measured the interior angles of a quadrilateral using a protractor, 

finding each angle to be 90°, and suggested that the same method could be used for other polygons; 

however, their peers rejected this approach. Similarly, another student assigned values to the interior 

angles of polygons based on visual perception, which their peers also dismissed. This situation shows 

that, in the classroom, proof must conform to the social and socio-mathematical norms of the class to 

confirm the validity of a claim. Indeed, since experimental verification is not accepted as a valid proof 

method in this classroom, its validity was not confirmed, and counterviews were formed 

(SMN3c,SN3d). It was observed throughout the entire teaching experiment that the class community 

reached a common agreement on the explanation and justification of ideas (SN3), and this norm 

revealed the insight (A1) sub-function of the explanation function of proof. At the same time, it was 

observed that for a solution or statement to be convincing and its validity to be confirmed (D1, D2), the 

explanations provided must be acceptable and align with the norms within the justification theme, 

which revealed the verification function of proof. The emergence of acceptable mathematical 

explanations and valid proofs is influenced by both the justifications provided by students to each other 

and the feedback and evaluations given by the teacher (SMN3a,SMN3b). Indeed, the emergence of these 

norms and functions depends on students sharing their ideas and communicating with each other and 

their teachers (İ).  

Norms in the Collaboration Theme and Their Connection with the Functions of Proof 

The norms examined under the “Collaboration” theme and the functions supported by the 

development of these norms are presented in Table 7: 

Table 7. Norms in the “Collaboration” Theme and Their Connection with the Functions 

 NORMS IN THE COLLABORATION THEME  

It is expected that solutions are collaboratively developed (SN4) 

Functions of Proof SN4a SMN4a 

Verification (D)  D1 ✓All weeks ✓All weeks 

 D2 ✓All weeks ✓All weeks 

Explanation (A)  A1 ✓All weeks ✓All weeks 

 A2 ✓3,5,8,10,11,12 ✓3,5,8,10,11,12 

Communication (İ)  İ1 ✓All weeks ✓All weeks 

 İ2 ✓All weeks ✓All weeks 

Discovery (K)  K1   

Systematization (S)  S1 ✓All weeks ✓All weeks 

 S2 ✓3,5,8,10,11 ✓3,5,8,10,11 

 S3   
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As presented in Table 7, the norm "It is expected that solutions are collaboratively developed 

(SN4)" is considered the fundamental norm under this theme, as it initiates and supports the socio-

mathematical norms of “Reaching a common conclusion (SN4a),” “Forming a collective proof for the 

class (or group) (SMN4a).” Since the KARİDE model is designed to facilitate students' collaboration in 

small group activities, producing solutions together, and constructing a common proof during 

classroom discussions, the norms under the theme of collaboration are explicitly evident throughout all 

dialogues. Developing of a common understanding among students regarding the necessity of 

collaborating and producing solutions together (SN4) facilitated communication among them and 

created a forum for debate (İ1,İ2). This situation demonstrates the connection between the norms under 

the theme of collaboration and the communication function of proof. Throughout all weeks of the 

teaching experiment, it was observed that students who could not solve problems individually could 

produce solutions together with their peers in small groups, striving to develop a common solution 

agreed upon by all group members (SN4a,SMN4a). For small groups to reach a common conclusion, it 

was necessary for all members to be convinced of the validity of the conjectures and for the group to 

confirm their correctness (D1,D2). This situation demonstrates that the norms under the theme of 

collaboration support the verification function of proof. In the process of reaching a common conclusion 

(SN4a), incorrect conjectures were refuted with counterexamples (S1), objections were raised against 

experimental validations, and students were required to provide mathematical explanations (A) to 

demonstrate the validity of the conjectures. This situation indicates that the norms under the 

collaboration theme support proof's explanations and systematization functions.  

Conclusion, Discussion, and Recommendations 

This study aims to identify the social and socio-mathematical norms arising from student and 

teacher actions within the classroom microculture, the functions of proofs, and the relationship between 

proof functions and norms in a learning environment designed according to the KARİDE model. The 

study results showed that most of the class members adopted the norms of discussion, problem-solving, 

justification, and collaboration as the elements of the interaction structure in the lesson sessions created 

according to the KARİDE model in the 12-week teaching experiment. These norms emerged 

prominently in the dialogues in the discussions. The results show that these norms are interrelated and 

support each other's development. At the same time, study's results indicate that the learning 

environment created according to the KARİDE model and the proof problems in this environment 

enables proof to serve many purposes simultaneously, thus revealing the different functions of proof 

and supporting the development of each other. In teaching practices, it was observed that the 

verification function of proof was “Conviction” and “Confirmation,” the explanation function was “ 

Insight” and “Consequences,” the communication function was “Form of discourse,” and “Forum for 

debate,” the discovery function was “Analysis,” and the systematization function was 

“Inconsistencies,” “ Connections,” and “Application.” When the results are considered in the context of 

the relationship between norms and functions, it is evident that norms and proof functions intertwine 

within dialogues. Norms associated with discussion and collaboration themes mainly support the 

communication function of proof. In contrast, norms related to justification and problem-solving themes 

support the verification, explanation, discovery, and systematization functions of proof. The agreement 

within the class or small groups to share ideas, seek clarification on unclear points, defend their 

conjectures, and present opposing views facilitated student communication and created a classroom 

environment conducive to discussions. These results demonstrate that the norms within the discussion 

theme and the communication function of proof mutually support each other. At the same time, it was 

observed that the visibility of norms within the collaboration theme, which allowed small groups to 

produce solutions together, alongside the norms within the discussion theme, was made possible 

through the communication function of proof. The class's agreement on norms, such as explaining and 

justifying their views, providing acceptable justifications, avoiding experimental verification, offering 

different solutions to problems, and using algebraic methods in their solutions, indicated the presence 

of norms within the themes of justification and problem-solving. At the same time, these norms showed 
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parallel progress with proof functions, such as verifying the proof by convincing oneself and the group, 

explaining why it is correct, discovering more general results, and revealing inconsistencies and 

connections between concepts. All these situations indicate that the mentioned norms and the functions 

of proof support each other. However, in this study, it was observed that the "Analysis" sub-function of 

the discovery function and the "Application" sub-function of the systematization function appeared less 

frequently in dialogues than in other functions. This result is due to the middle school level at which 

the study was conducted and the problems selected to suit this level.  

The framework of mathematical proof addressed in this study is based on Stylianides' (2007) 

definition of proof, which is socially constructed and valid on classroom norms. It is known that the 

classroom community contributes to the formation of the microculture in the learning and teaching 

environment and is influenced by it. It is emphasized that understanding the role of a norm requires 

analyzing how it is related to other norms (Lopez & Allal, 2007). Indeed, the current study demonstrates 

how each norm is interconnected with different norms and how they mutually support one another in 

classroom dialogues. Furthermore, it is emphasized that social and socio-mathematical norms, when 

implemented alongside inquiry-based collaborative approaches in classrooms, are highly effective in 

ensuring students' active participation in mathematical discussions, enhancing the quality of their 

contributions, understanding a classroom's culture, and modifying this culture in the desired way 

(Partanen & Kaasila, 2015; Yackel & Cobb, 1996). In this classroom, designed according to the KARİDE 

model, where collaboration and mathematical discussions were actively conducted, it was observed 

that the norms under the discussion theme, in particular, enhanced the quality of the process of 

participating in classroom activities and solving proof problems. The students in this classroom agreed 

on sharing ideas, collaborating to produce solutions, asking questions about unclear points, presenting 

counter views, and forming a common solution guided and organized small group and whole-class 

discussions. Herbst et al. (2010) state that communication encompasses sharing the results reached in a 

proof, discussing them, and having their validity accepted or rejected by different individuals. 

Therefore, the results of this study demonstrate that the norms under the theme of discussion support 

the communication function of proof. As students shared their ideas while constructing proofs, the 

definitions, concepts, or justifications they used were evaluated by other students through the emerging 

forms of discourse. Thus, relationships were established between different justifications in the 

discussion environment created by the communication function of proof. While responding to 

counterarguments, students had the opportunity to revise their arguments, enabling them to identify 

inconsistencies between their arguments and those of their peers. Various researchers have emphasized 

that proof is significant in classroom settings for conveying arguments and demonstrating how students 

communicate with one another (Bartlo, 2013; Herbst et al., 2010). Cilli-Turner (2017) attributed the 

significant difference observed in the communication function of proof in a discussion-based classroom 

to the fact that traditional education hinders the communicative aspect of proof. Similarly, Bleiler-Baxter 

and Pair (2017), in their study investigating which classroom activities reveal the functions of proof, 

demonstrated that the most substantial relationship exists between the communication function of proof 

and discussion. Indeed, the consideration of proof as a social process in this classroom, facilitated by 

the KARİDE model, which enables small group and class discussions, supports the findings of these 

studies. In this process, students communicate using mathematical language, employ norms to ensure 

regularity in discussions and establish a framework for valid proofs.  

In some proof problems, it has been observed that students engaged in diverse solution 

approaches and provided justifications during discussions about how the methods they used in their 

solutions differed from one another to convince group members and the class. Lev and Leikin (2017) 

state that students' use of diverse justifications and strategies encourages them to make discoveries. 

Indeed, in this study, the expectation for students to present different solutions led them to explore 

other approaches, provide varied justifications, generalize their solutions to apply to similar problems, 

and make discoveries. These activities facilitated the emergence of the discovery and systematization 

functions of proof. Similarly, Bartlo (2013) stated in his study that students can sometimes discover more 

general and more substantial conclusions by analyzing proof.  
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During discussions, students asking questions like, "Can you explain why this is correct?" or 

"How can you be sure it is true?" and the teacher initiating class discussions by asking, "Did this solution 

convince you?" demonstrates that both in small group and whole-class discussions, students reached a 

common understanding as they explained and justified their thoughts while trying to persuade their 

peers. At this point, it is evident that the norms within the theme of justification support both the 

explanation and verification functions of proof. For the explanations provided by students to convince 

group members or the class, they needed to include acceptable mathematical justifications or a valid 

mathematical proof. In this way, it has been highlighted by various researchers (Bartlo, 2013; Dreyfus, 

1999; Herbst et al., 2010) that instead of passively accepting and memorizing mathematical explanations 

presented by others, students convince themselves of the validity of their mathematical ideas through 

proof can help them become autonomous learners. In parallel with the results of this study, Mudaly 

(2007), in his teaching experiment, focused on assisting students to understand that proof serves not 

only as a tool for verification but also for explanation. He demonstrated that students understood 

different functions of proof and acquired the skills to construct deductive proofs with proper 

justifications. The current study observed that during the initial weeks of the teaching experiment, the 

researcher-teacher communicated the expectation that students should provide explanations and 

justifications. In subsequent weeks, students became aware of this expectation without the teacher's 

repetition, leading to an insight into what constitutes an acceptable mathematical explanation and 

justification in this classroom. When an explanation or empirical verification did not align with this 

insight, it was observed that students responded to such explanations by presenting counterarguments, 

defending their viewpoints, refuting assumptions, and revealing inconsistencies through 

counterexamples. This situation demonstrated that the norms within the themes of justification and 

discussion are related not only to the explanation function of proof but also to its systematization 

function. Students asking about unclear points during discussions indicates the expectation for 

acceptable mathematical explanations. Dennis (2000) and De Villiers (1999) stated that the explanation 

function of proof makes visible how the concepts involved in the proof are related to one another and 

the given conjectures being proved and that the result obtained in the proof contributes to the 

systematization of knowledge by revealing the relationships within the proof. Similarly, Hanna (2000) 

stated that the explanation function of proof makes fundamental mathematical connections visible and 

demonstrates why a conjecture is true, leading to discoveries. In this classroom, students' ability to 

convince their peers of the correctness of their solutions depended on explaining their justifications, 

which needed to be acceptable mathematical justifications recognized by the class. In contrast, an 

acceptable mathematical justification and proof relied on establishing connections between various 

mathematical concepts. Yackel and Cobb (1996) stated that while constructing proofs, claims are 

justified, and the criteria for appropriate justifications are established simultaneously, with these criteria 

-defined as socio-mathematical norms- guiding classroom discussions. Ingram, Andrews, and Pitt 

(2019) state that justification is a communicative act, enabling the revelation of what students know and 

do not know about mathematical concepts through the justifications they present so that teachers can 

make more accurate pedagogical decisions through mathematical communication and justification. In 

this study, it was also observed that the norms within the theme of justification support the explanation 

and communication functions of proof. 

 The classroom microculture, shaped by the social and socio-mathematical norms co-

constructed by the teacher and students, along with the teacher's pedagogical choices (including 

selected mathematical tasks, daily routines, expectations, and teaching strategies), is stated to influence 

students' proof-construction skills as well as their perspectives and understanding of proof (Martin & 

McCrone, 2003). The results of the current study align with other research in highlighting the teacher's 

role, strategies, and the significance of proof tasks selected by the teacher in establishing and developing 

norms within the classroom (Ozdemir-Baki & Kilicoglu, 2023; Sekiguchi, 2006). Ozgur (2017), in his 

study, stated that the mathematics teacher emphasized the importance of understanding why a claim 

is correct rather than merely showing that it is accurate, encouraging students to investigate, justify, and 

generalize their conjectures while supporting their understanding of proof by setting clear expectations 
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about what constitutes an acceptable justification and proof. In this study, the teacher's clear 

expectations, established through norms in a discussion-based learning environment, enabled students 

to experience the different functions of proof. Indeed, the findings align with the recommendations of 

studies (Bleiler-Baxter & Pair, 2017; Rocha, 2019) that emphasize the need to meaningfully integrate all 

functions of proof into the learning environment, advocate for the inclusion of proof at the elementary 

level, and call for further research on how to structure proof experiences in these classrooms.  

This study demonstrated how proof can be incorporated into middle school mathematics 

teaching by emphasizing its functions and social aspects through the teacher's pedagogical choices and 

practical guidance, supporting the necessity of making proof an integral part of mathematics education 

at all levels. However, the study highlighted certain elements that must be considered when 

incorporating proof into middle school mathematics teaching. In particular, it is necessary to select proof 

problems that employ forms of argumentation appropriate to the level of middle school students and 

conceptually accessible to them. At the same time, the teacher must present to students in advance the 

framework for the characteristics of a mathematically valid argument, the method of argumentation, 

and the forms of representation that will be accepted in the classroom. Before beginning 

implementations, as in the current study, the teacher should consider the existing classroom norms and 

create a discussion environment that facilitates the emergence of classroom norms supporting proof 

functions. In this context, integrating proof into the middle school mathematics curriculum as a tool for 

learning mathematics and designing classroom activities where students evaluate each other's 

reasoning through small group and class discussions using the KARİDE model, including practices 

aimed at establishing and developing social and socio-mathematical norms, can be recommended. Since 

the results of this study are limited to a single classroom and its microculture, it is recommended to 

investigate the functions of proof and the connections between these functions and norms at different 

levels and in diverse classroom settings. An increase in research in this direction could provide insights 

into the social aspect of proof and how it should be addressed at the middle school level. 
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Appendix-1 

Week 1 Activity 

 An integer is added to the integer two steps before it and the integer two steps after it. What 

can you say about this sum? 

The Focus of the Activity 

*Developing a mathematical conjecture  

*Determining whether the reached conjecture is always valid  

*Proving directly using algebraic representation (Direct Proof: Assuming the proposition p is true, 

the truth of proposition q is demonstrated using known definitions, theorems, and rules.)  

*Proving visually using a graphical representation  

Week 2 Activity 

 For all integers n, n3 ≥ n2. 

The Focus of the Activity 

*Examining the validity of the given proposition  

*Proving by counterexample (Providing a counterexample is a proof method where at least one 

example is given to show that the proposition is false.)  

*Updating the proposition as follows:  

If n is a natural number, then n3≥n2, If n is a negative integer, then n3<n2 

Week 3 Activity 

 

 

𝐴𝐷𝐵 
∆

 is a right triangle, m(𝐷𝐴𝐶) 
∧

=300, 𝑚(𝐶𝐴𝐵) 
∧

= 𝑚(𝐴𝐵𝐷) 
∧

= 600 ve 𝐴𝐵  =6 cm. What can you 

say about the measure of angle D and the length │DC│? 

The Focus of the Activity 

*Developing mathematical conjectures  

*Determining whether the reached conjecture is always valid  

*Performing a direct proof.  

Week 4 Activity 

 Ali Baba is raising chickens and rabbits on his farm. The total number of heads of chickens 

and rabbits is 37, and the total number of legs is 98. How many chickens and rabbits does Ali 

Baba have on his farm?  

Elaboration of the Activity: 

*If the total number of heads of chickens and rabbits on the farm were 40, and the total 

number of legs were 140, what would the result be? 

*A group of 10 people, consisting of masters and workers, earns 128 lira from a job. If a 

master earns 20 lira and a worker earns 8 lira, how many workers and masters are in the 

group? 

The Focus of the Activity 

*Developing a general solution method  

*Applying the determined method to a similar problem  

  



Education and Science 2025, Vol 50, No 222, 67-98 T. Y. Yılmaz & N. Yavuzsoy Köse 

 

96 

Week 5 Activity 

 Below, a rectangle, a pentagon, a hexagon, and a heptagon are given. Find the sum of the 

measures of the interior angles of these geometric shapes. 

 
Elaboration of the Activity: 

*What is the sum of the measures of the interior angles of a 30-sided polygon?  

*What is the sum of the measures of the interior angles of an n-sided polygon?  

*How do we calculate the measure of one interior angle of a regular polygon?  

The Focus of the Activity 

*Developing a mathematical conjecture  

*Determining whether the reached conjecture is always valid  

*Demonstrating that the sum of the interior angles of a (convex) polygon is (n-2).180 by performing a 

direct proof  

*Establishing a geometry-algebra relationship: Providing a geometric explanation for the algebraic 

generalization  

Week 6 Activity 

 The unit digit of the square of an integer is always an element of the set A={0,1,4,5,6,9}. 

The Focus of the Activity 

*Examining the validity of the given proposition  

*Proving by exhaustion in a finite set (Exhaustive proof is a type of proof where all possible cases 

within the defined set of the proposition are tested one by one to demonstrate its truth.)  

Week 7 Activity 

 We have an unlimited number of black and white cubes. Using these cubes, we will build 

towers. Assuming at least one black cube and one white cube are used, how many different 

towers of height four can we construct, as shown?  

If we were asked to build towers of height five, how many different towers could we 

construct?  

 
The Focus of the Activity 

*Developing a mathematical conjecture  

*Determining whether the reached conjecture is always valid  

*Proving by exhaustion through systematic diagramming  

Week 8 Activity 

 What is the sum of the measures of the exterior angles of each polygon below? 

Elaboration of the Activity: 

*What is the sum of the measures of the exterior angles of a 30-sided polygon?  

*What is the sum of the measures of the exterior angles of an n-sided polygon?  

 
The Focus of the Activity 

*Developing a mathematical conjecture  

*Determining whether the reached conjecture is always valid  

*Demonstrating through a direct proof that the sum of the measures of the exterior angles of a 

(convex) polygon is 360o 
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Week 9 Activity 

 Every integer with a multiple of 6 is also a multiple of 3.  

Ali: I tested some numbers multiples of 6, such as 12, 60, and 606, and observed that they are 

also multiples of 3. Therefore, this statement is always true. 

Ayşe: Let n be an integer; any multiple of 6 can be written as 6n. We know that 6n = 3.2n, 

which is a multiple of 3. Therefore, any multiple of 6 is always a multiple of 3. 

Ahmet: Suppose we have several cookies that is a multiple of 6. Let’s distribute these cookies 

into several boxes, each containing 6 cookies. Then, we can further divide each box into 2 

smaller boxes, containing 3 cookies. In this way, we have effectively distributed all the 

cookies into groups of 3. Therefore, any multiple of 6 is always a multiple of 3.  

Aslı: The total number of square-shaped cards below is a multiple of 6. 

 
Now I can arrange these square-shaped cards as shown below. 

 
Therefore, any multiple of 6 is always a multiple of 3.  

Order the arguments from the most convincing to the least convincing. 

 The Focus of the Activity 

* Evaluating the given arguments. 

Week 10 Activity 

 What can you say about the quadrilateral formed when the midpoints of the sides of a 

rectangle, as shown in the figure, are connected? 

Elaboration of the Activity: 

What can you say about the quadrilateral formed when the midpoints of the sides of a 

square are connected? 

 
The Focus of the Activity 

*Developing mathematical conjectures  

*Determining whether the reached conjecture is always valid  

*Demonstrating through direct proof that the quadrilateral (EFGH) is a rhombus. 

Week 11 Activity 

 The sum of five consecutive natural numbers is always a multiple of 5.  

There are three consecutive integers whose sum is always a multiple of 6.  

The sum of four consecutive natural numbers is always a multiple of 4. 

The Focus of the Activity 

*Examining the validity of the given propositions  

*In the first proposition, prove directly that the statement is always true.  

*In the second proposition, use the existence proof method to demonstrate that the statement is true 

(Existence proofs are a type of proof where giving a single example using existential quantifiers is 

sufficient to prove the statement).  

*In the third proposition, provide a counterexample to prove that the statement is false.  
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Week 12 Activity 

 Ahmet is laying gray tiles in a single row around the white tiles, as shown in the figure.  

How many gray tiles are needed to surround (n) white tiles? 

 
The Focus of the Activity 

*Reaching a generalization  

*Deriving the general rule of the pattern and performing deductive verification by relating it to the 

figure. 

 


