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Abstract  Keywords 

A testlet refers to groups or clusters of items that are linked to a 

common stimulus such as a text, graphic or table. Due to the shared 

stimulus among these items, there is a high likelihood of inter-item 

dependency within the responses, which violates the assumption 

of local independence in Item Response Theory (IRT). This 

violation results in local dependence among the items within the 

testlets. Therefore, this study employed IRT and the Testlet 

Response Theory (TRT) models to assess the impact of local 

dependence stemming from testlets on item and ability parameter 

estimations, classification accuracy, and Differential Item/Bundle 

Functioning (DIF/DBF), and compared the findings obtained from 

these models. Responses to three testlets that were both in booklets 

13 and 14 in the eTIMSS 2019 mathematics subtest were analysed 

using the mirt package in R software. The analysis revealed a 

moderate degree of local dependence in the testlets. Additionally, 

a very high correlation was observed between the item and ability 

parameter estimations derived from both models. Regarding 

classification accuracy, the IRT and TRT models demonstrated 

equivalent performance. When items were analysed both 

independently and as part of testlets, no items exhibited evidence 

of DIF/DBF based on gender. The findings indicate that IRT can 

tolerate the effects of testlets when the degree of local dependence 

is low to moderate. 
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Introduction 

The assessment of student performance has long been a central focus of educational research. 

Accurate estimation of item difficulty and student ability is crucial for effective teaching and assessment 

practices. However, the estimation of item difficulty and ability parameters can vary depending on the 

type of the test, the nature of the items included, the structure of the test, and the group to which it is 

administered. Testlets or clusters, which consist of items sharing a common stimulus such as a reading 

comprehension passage, a figure or a graph, are referred to as testlets (Wainer & Kiely, 1987). Testlets 

allow for a more detailed modelling of factors influencing student responses such as contextual 

information and cognitive processes. Koziol (2016) states that the purpose of using testlets in a test is to 
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capture performance beyond what is explained by the latent trait of interest. Furthermore, the use of 

testlets aims to better assess higher-order skills (DeMars, 2010; Wainer & Wang, 2000). 

From the perspective of test development, testlets not only bring together more complex and 

interrelated items but also contribute to improving test efficiency (Thissen, Steinberg, & Gerrard, 1986). 

Specifically, groups of items organized within a testlet allow test participants to respond to multiple 

items linked to a common stimulus, providing time and effort efficiency (Ho & Dodd, 2012; Wainer & 

Wang, 2000). Furthermore, testlets can help reduce issues related to variance irrelevant to the construct 

by anchoring item responses to a shared stimulus, potentially enhancing the validity of inferences made 

about test-takers’ abilities. This is because individuals only need to evaluate the content associated with 

the shared stimulus once and can then use this information across all items in the testlet. For these 

reasons, the use of multiple-choice test formats incorporating one or more sets of testlets referencing a 

common text is particularly prevalent in assessing foreign language skills. In Türkiye, national 

standardized exams are administered by the Centre for Assessment, Selection and Placement (ÖSYM). 

Due to the advantages they offer, testlets are frequently employed in both exams conducted by ÖSYM 

(e.g., ALES, KPSS, YDS, e-YDS, YKS, YÖKDİL) and international assessments (e.g., GRE, IELTS, SAT, 

TOEFL). Integrating similar testlet applications into K-12 test development processes in Türkiye could 

enhance both the validity and efficiency of measurement and evaluation practices. Considering that 

primary and middle school students have limited attention spans, testlets based on a common stimulus 

could save time and enable students to proceed through tests in a more focused manner.  

Testlets, due to their frequent use and the advantages they offer, have necessitated the 

application of various methods based on Item Response Theory (IRT) in addition to Classical Test 

Theory (CTT) to examine the validity and reliability of test scores. IRT analyses have gained increasing 

importance both nationally and internationally as a robust tool for enhancing the validity and reliability 

of tests. This is because IRT models not only evaluate test scores but also model the latent ability levels 

underlying responses to individual items, thus helping to estimate students’ abilities more accurately 

(Embretson, 2010; Hambleton & Rogers, 1989). Weiss (1982) highlighted that the use of different IRT 

methods has grown with the widespread adoption of Computerized Adaptive Testing (CAT) designs, 

which adapt the difficulty level of test items to an individual’s level of ability, allowing for more precise 

estimations of ability. Although IRT provides a powerful statistical framework for modeling the 

relationship between an individual’s ability and their responses to test items, its application relies on 

several fundamental assumptions (Embretson, 2010). IRT models are primarily categorized into 

unidimensional and multidimensional models. The first assumption of unidimensional IRT is that the 

latent trait being measured is unidimensional. Secondly, unidimensional IRT assumes that the 

probability of a correct response to an item is a monotonically increasing function of an individual’s 

level of ability. This function, known as the item characteristic curve, describes the relationship between 

the latent trait and the probability of a specific response (Hambleton & Rogers, 1989). The third 

assumption of unidimensional IRT is that responses to different test items are locally independent, 

meaning that the probability of responding correctly to one item is unaffected by responses to other 

items, given the individual’s ability level. When these assumptions are met, unidimensional IRT enables 

the estimation of item parameters (such as difficulty and discrimination) and individual ability 

parameters, providing more accurate and reliable test scores and supporting the development of 

adaptive tests (Hambleton & Rogers, 1989). Despite these appealing features, testlets can lead to 

violations of the local independence assumption in unidimensional IRT during parameter estimations. 

Local independence is a critical assumption in unidimensional IRT models; however, in practice, items 

within a testlet often exhibit correlated responses even after the latent trait is controlled (Koziol, 2016). 

IRT tends to overestimate the precision of ability estimations and test reliability when applied to testlets, 

leading to biased estimations of item difficulty and discrimination parameters (Eckes & Baghaei, 2015; 
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Sireci, Thissen, & Wainer, 1991). Furthermore, when the local independence assumption is not 

controlled in tests composed of testlets, there may arise errors in test equating, linking and classification 

accuracy (Keller, Swaminathan, & Sireci, 2003; Lee, Kolen, Frisbie, & Ankenmann, 2001; Li, Bolt, & Fu, 

2006). Additionally, the use of testlets in CAT applications allows for the control of contextual and 

ordering effects (Wainer, Bradlow, & Wang, 2007). However, when unidimensional IRT models are 

applied to CAT systems with testlets, violations of the local independence assumption can lead to an 

overestimation of item/testlet information functions (Thissen, Steinberg & Mooney, 1989). For this 

reason, in CAT applications composed of testlets, the use of Testlet Response Theory (TRT) models is 

more appropriate to achieve greater accuracy in ability estimation and measurement precision. 

In tests containing testlets, two methods have been proposed to address violations of the local 

independence assumption. One method involves treating all items within a testlet as polytomous items 

(super-item) and using a model suitable for unidimensional polytomous items for parameter estimation 

(Cook, Dodd, & Fitzpatrick, 1999; Sireci et al., 1991; Yen, 1993; Wainer, 1995). This method is appropriate 

in situations where the degree of local dependence among items in a testlet is moderate, and the test 

predominantly consists of independent items (Wainer, 1995). However, this approach is impractical 

because the number of possible response patterns increases geometrically with the number of items in 

a testlet, making it rarely used in practice (Thissen et al., 1989). Additionally, since the total score of the 

items in the testlet is considered, it may result in a loss of information (Wainer & Lewis, 1990). An 

alternative method is to account for the effects of testlets by incorporating specific dimensions in 

addition to the general dimension within IRT models. Such multidimensional IRT models are frequently 

employed by researchers. These include bifactor models (Gibbons & Hedeker, 1992) and random-effects 

testlet response models (Bradlow, Wainer, & Wang, 1999; Wainer et al., 2007). Li and others (2006), 

Rijmen (2010), and Min and He (2014) have noted that random-effects testlet models can be used as a 

special case of bifactor models. This is achieved by constraining the loadings on the specific dimension 

to be proportional to the loadings on the general dimension within each testlet. In summary, tests 

consisting of testlets require the use of complex models such as the Testlet Response Theory (TRT), 

which incorporate an additional parameter that accounts for the level of local dependence and specifies 

the individual-specific amount of local dependence within each testlet (Wainer, Bradlow, & Du, 2000). 

Researchers have often focused on parameter and ability estimation using unidimensional IRT, 

TRT and bifactor models in tests comprising testlets (Baghaei & Ravand, 2016; DeMars, 2006; Soysal & 

Yılmaz Koğar, 2022; Yılmaz Koğar, 2021). The number of studies in which DBF analysis was performed 

on testlets is quite small (Paek & Fukuhara, 2015; Tasdelen Teker & Dogan, 2015; Wainer, 1995). In this 

study, we examined parameter estimation, accurate classification performance of test participants, and 

the presence of Differential Item Functioning (DIF) or Differential Bundle Functioning (DBF) within 

items or testlets according to IRT and TRT models. Accurate classification of students is particularly 

critical in educational settings. Hence, this study investigated how local dependence in tests comprising 

testlets affects classification accuracy and how this accuracy varies across binary and multi-category 

classifications. Another crucial issue considered is the potential for test participants from specific 

subgroups to exhibit differing performance patterns on testlets due to factors beyond item difficulty. If 

not accounted for, this phenomenon, known as Differential Item Functioning (DIF), can lead to biased 

parameter estimates and misclassification of student proficiency. Therefore, conducting DIF studies that 

account for testlets and analysing this issue comparatively are expected to contribute significantly to 

the literature. Furthermore, the modelling of tests comprising testlets has predominantly been 

investigated using data from assessments such as PISA, SAT or simulation studies (Chang & Yang, 2010; 

Koziol, 2016; Yılmaz Koğar, 2021). However, applying these models to diverse real-world datasets could 

provide researchers with more detailed insights and greater opportunities for comparisons. 

Accordingly, this study employed the TIMSS-2019 dataset to perform parameter estimation using 
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traditional IRT and TRT models to analyse and compare classification accuracy and DIF results. Existing 

studies on classification accuracy have primarily focused on binary classifications such as pass-fail 

outcomes, yet their number remains limited (Koziol, 2016; Zhang, 2010). Comparing multi-category 

classifications and DIF outcomes in testlets across different models (IRT-TRT) using the TIMSS dataset 

is expected to provide a unique contribution to the literature. Additionally, discussing the findings of 

this study in light of other studies in the field will help establish a broader perspective on classification 

accuracy and DIF analyses in tests comprising testlets. To achieve these objectives, the study explored 

the research questions by analysing responses to three testlets included in both Booklet 13 and Booklet 

14 of the e TIMSS 2019 assessment in the Turkish sample: 

1. What is the level of local dependence among the three testlets in the mathematics subtest? 

2. How is the relationship between the item and ability parameters obtained from the 2PL-IRT and 

2PL-TRT models in the mathematics subtest consisting of testlets? 

3. How is the classification accuracy obtained from the 2PL-IRT and 2PL-TRT models in the 

mathematics subtest consisting of testlets? 

4. Are there any items containing gender based DIF/DBF in the mathematics subtest consisting of 

testlets? 

Method 

Research Type 

In this study, we analyzed a test consisting of testlets in terms of parameter estimation, 

classification accuracy and DIF/DBF using different IRT models. This study is descriptive research that 

provides more information about the current situation by thoroughly comparing the results obtained 

from different methods (Creswell, 2014; Karasar, 2016). 

Study Group  

Trends in International Mathematics and Science Study (TIMSS) is an achievement monitoring 

study conducted every four years by the International Association for the Evaluation of Educational 

Achievement (IEA). TIMSS, first conducted in 1995, is carried out at four-year intervals and is an 

important international research study. TIMSS aims to assess the achievements of students in 

mathematics and science at the fourth and eighth grade levels. In the 2019 cycle, the sample from 

Türkiye, one of the 39 participating countries at the eighth-grade level, consisted of 4.077 students from 

181 schools. In the 2019 TIMSS application, there was a shift to computer-based assessment (eTIMSS). 

This study used three testlets that were both in Booklets 13 and 14, from the Turkish sample of eTIMSS 

2019. These testlets consist of two, four and six items respectively. In the analysis, we used listwise 

deletion for 89 participants with missing data. After the deletion of missing data, we used the responses 

of a total of 503 students, of which 47.9% were female and 52.1% were male. 

Data Analysis  

We examined the model-data fit within both IRT and TRT frameworks and found out that the 

best fit was achieved with the 2PL model. The results showed that the item discrimination and intercept 

parameters in the 3PL and 3PL TRT models exhibited unusual values. As a result, the analyses 

proceeded with the 2PL IRT and 2PL TRT models. For the three testlets in both Booklets 13 and 14 in 

the TIMSS 2019 application, we made estimations of and compared item and ability parameter values 

according to the 2PL-TRT (Wainer et al., 2007) and 2PL-IRT (Birnbaum, 1968) models. In this study, we 

considered item parameters such as slope and intercept coefficients. We obtained ability estimates using 

the Expected A. Posteriori (EAP) method. We conducted the item and ability parameter estimates and 

DIF analyses using the mirt package (Chalmers, 2012) in R software, while we assessed classification 

accuracy using the cacIRT package (Lathrop, 2015). 

In this study, we calculated the standard errors corresponding to the item and ability parameter 

estimates obtained from different IRT models and then compared these models. Additionally, we used 
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the Spearman Rank-Order Correlation Coefficient to examine the relationship between item and ability 

parameter values. We employed the Rudner method based on IRT to calculate classification accuracy. 

In determining DIF/DBF, we used the SIBTEST method, which allows both individual items and testlets 

to be examined independently. 

Testlet Response Theory  

Testlet Response Theory (TRT) addresses local dependence on items that are part of testlets. If 

local dependence is not properly accounted for, the psychometric results of the test can be adversely 

affected. Over the past twenty years, various methods have been proposed to model testlet structures 

in order to capture local item dependence from different perspectives. Bradlow et al. (1999) and Wainer 

et al. (2000) extended traditional Item Response Theory (IRT) models by incorporating random effect 

parameters to explain the interaction between testlets and individuals. In this context, the 2PL-TRT 

model, which includes the random item effect parameter γ accounting for the local dependence levels 

among items within a testlet, consists of the following parameters: a (item discrimination), b (item 

difficulty) and γ (random testlet effect parameter) 

𝑃(𝜃𝑖 , 𝛼𝑖 , 𝑏𝑖) =
𝑒𝑥𝑝⁡(𝛼𝑖(𝜃𝑗 − 𝑏𝑖 − 𝛾𝑗𝑑(𝑖)))

1 + ⁡𝑒𝑥𝑝⁡(𝛼𝑖(𝜃𝑗 − 𝑏𝑖 − 𝛾𝑗𝑑(𝑖)))
 

The testlet effect parameter (𝛾𝑗𝑑(𝑖)) is a parameter specific to both the individual and the testlet. 

When the local independence assumption is met, the value of this parameter is zero, i.e., 𝛾𝑗𝑑(𝑖) = 0 for 

all individuals, and in this case, the TRT model transforms into the unidimensional IRT model. The 

variance of 𝛾𝑗𝑑(𝑖) is typically estimated for each item set and is used as an indicator of the degree of local 

dependence among the items within the testlet. The variances of the testlet effects vary across testlets. 

Additionally, when the guessing parameter (𝑐𝑖) is included, the 3PL-TRT model becomes a special case 

of the 2PL-TRT model. However, since the 3PL-TRT model contains more parameters than other TRT 

models, the computational algorithms are more complex. 

Li and others (2006) proposed a general two-parameter normal ogive testlet response theory 

model (2PNOTRT) from a multidimensional perspective. In this multidimensional model, each item 

response is dependent on both the primary dimension and the secondary testlet dimension. Both TRT 

models are constructed within the probit link function framework. Based on this, Zhan, Li, Wang, and 

Bian (2015) introduced the concept of within-item multidimensional testlet effect. Lu, Zhang, Zhang, 

Xu, and Tao (2021) proposed a new testlet discrimination parameter based on the logit link function for 

dichotomously scored items. This parameter has been applied in large-scale language assessments 

(Eckes, 2014; Rijmen, 2010; Zhang, 2010), hierarchical data analyses (Jiao, Kamata, Wang, & Jin, 2012), 

and cognitive diagnostic assessments (Zhan et al., 2018) in fields such as education and psychology. 

One of the most commonly used estimation methods for TRT models is the marginal maximum 

likelihood method through the Expectation-Maximization (EM; Dempster, Laird, & Rubin, 1977) 

algorithm (Bock & Aitkin, 1981; Glas, Wainer & Bradlow, 2000; Mislevy, 1986; Wang & Wilson, 2005). 

Ability parameters and testlet effects are viewed as unobserved latent variables, and then the 

marginalization of the full data likelihood (responses and unobserved data) can be computed based on 

the unobserved data. However, the marginal maximum likelihood estimation of TRT models is 

hindered by the fact that the calculations often involve analytically challenging high-dimensional 

integrals, making it difficult to obtain the maximum likelihood estimates of the parameters. More 

specifically, when integrals over the latent variable distributions are evaluated using Gauss quadrature 

(Bock & Aitkin, 1981), the number of relevant computations increases exponentially with the number of 

latent variable dimensions. Although the number of quadrature points per dimension can be reduced 

by using adaptive Gauss quadrature (Pinheiro & Bates, 1995), the total number of points still grows 

exponentially with the number of dimensions. Naturally, all of this TRT analysis process encompasses 

a more complex and time-consuming procedure. 
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Classification Accuracy 

Classification accuracy refers to the degree to which decisions made based on test scores align 

with decisions that would be made if the scores were free of measurement error (Hambleton & Novick, 

1973). Since all measurements in education and psychology involve some degree of measurement error, 

it is necessary to determine classification accuracy. A misclassification of a test participant indicates a 

classification error. Classification errors occur when a test participant is assigned to a higher ability 

category than their true proficiency level or to a lower category than their true ability. Classification 

accuracy is crucial in high-stakes assessments, as it can have significant implications for students’ 

futures. Additionally, it provides valuable insights into the strengths and weaknesses of an assessment, 

helping educators and policymakers make data-driven, informed decisions. Classification accuracy is 

critical for guiding instructional decisions, evaluating program effectiveness, and ensuring that students 

receive the necessary support to succeed (Cizek & Bunch, 2007). 

Both criterion-referenced and norm-referenced assessments involve classification. An example 

of a two-category classification could be “pass” and “fail,” while multiple classification categories might 

include levels such as “basic,” “sufficient” and “advanced.” An example of classification used in 

criterion-referenced tests is the language score categorization (A, B, C, D) in the Foreign Language Exam 

(YDS) conducted by ÖSYM. In norm-referenced assessments, an example of classification would be the 

Higher Education Institutions Exam (YKS), which evaluates student performance by comparing it to 

the performance of other candidates. In the calculation of classification accuracy, the first methods 

developed were based on two applications. However, due to the challenges associated with two 

applications, there has been a growing effort to develop classification accuracy indices based on a single 

application. These methods can generally be classified into two categories: methods based on Classical 

Test Theory (CTT) (Hanson & Brennan, 1990; Huynh, 1976; Lee & Song, 2004; Livingston & Lewis, 1995; 

Subkoviak, 1976) and methods based on Item Response Theory (IRT) (Lee, 2010; Rudner, 2001, 2005). 

Within the IRT framework, the point estimate of ability can be treated as the latent true score. Rudner 

(2001, 2005) proposed a method for evaluating decision accuracy by calculating the expected probability 

of classifications. He developed indices based on the ability (θ) scale. In this method, classification 

accuracy is obtained by calculating the expected likelihood of classifications. For example, let the cutoff 

score be 𝜃𝑐, the true ability of candidate A be 𝜃𝑛, and the true ability of candidate B be 𝜃𝑚. Since 𝜃𝑚 > 𝜃𝑐 

> 𝜃𝑛, candidate A should be classified as “failed” in all predictions, while candidate B should be 

classified as “passed.” However, due to the error in ability estimation, a conditional distribution 

accompanies each true ability (θ). This means that candidate A might be classified as “passed” or 

“successful” by chance. This occurs when the estimated ability of the candidate exceeds the cutoff score 

θc. In classification terminology, this chance refers to the probability of making a false positive error, 

where a failure or non-expert individual is incorrectly classified as successful or an expert. 

In this study, we classified students’ possible scores into two categories based on proficiency 

level cutoff scores: below and above average. Subsequently, we performed a multi-category 

classification for four proficiency levels (lower, middle, upper, and advanced). For this comparable 

classification among different IRT models, we first determined cutoff scores and the corresponding 

ability levels for these cutoff scores. 

Differential Item and Differential Item Functioning  

Differential Item Functioning (DIF) occurs when individuals from different groups with the 

same ability level have different probabilities of answering an item correctly (Clauser & Mazor, 1998). 

Understanding and addressing DIF is crucial for ensuring fairness and validity in assessment practices. 

Identifying DIF is a critical step in evaluating fairness. Among the methods for detecting DIF are the 

Mantel-Haenszel method (Holland & Thayer, 1988), standardization method (Dorans & Kulick, 1986), 

logistic regression method (Swaminathan & Rogers, 1990), SIBTEST method (Shealy & Stout, 1993), 

Lord’s (1980) chi-square test (Wright & Stone, 1979), likelihood ratio test (Thissen, Steinberg, & Wainer, 

1988; Wang & Yeh, 2003), and the Multiple Indicators Multiple Causes (MIMIC) model (Finch, 2005; 
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Oort, 1998). In addition, there have been studies in which DIF was detected with methods based on 

Cognitive Diagnostic Models in recent years (Eren, Gündüz, & Tan, 2023; Ma, Terzi, & de la Torre, 2021). 

Differential Item Functioning (DIF) has also been defined within a multidimensional 

framework, based on the fact that it may arise due to certain characteristics of test items that are 

unrelated to the construct being measured. This framework assumes that all tests are, to some extent, 

multidimensional. In a test, there may be a primary dimension related to the construct being measured, 

as well as other dimensions that generate variance unrelated to the construct. For example, in a problem-

based math test, in addition to primary dimensions reflecting mathematical ability, there may be 

secondary dimensions such as reading comprehension or verbal ability. These other dimensions are 

typically correlated with the primary dimension. From this perspective, DIF is thought to arise from 

dimensions that are different from the primary construct of the test. Ackerman (1992) has discussed the 

foundation of the multidimensional framework in depth. Shealy and Stout (1993) developed a DIF 

statistic called SIBTEST within this framework. SIBTEST allows for the examination of multiple 

dimensions as sources of DIF. Since this method involves a type of factor analysis, it also allows for the 

examination of item groups rather than individual items. Because the method permits grouping items 

for DIF analysis, it is particularly useful for making more robust generalizations about the sources of 

DIF (Gierl, Bisanz, Bisanz, & Boughton, 2003; Mendes-Barnett & Ercikan, 2010). 

Unlike traditional DIF detection methods such as logistic regression and Mantel-Haenszel, 

SIBTEST has the advantage of examining DIF at both the individual item level and the testlet/bundle 

level. SIBTEST, which stands for Simultaneous Item Bias Test, is a regression-based method that 

evaluates the degree of different functioning of an item or item group across two or more subgroups of 

the test after controlling for the measured underlying ability. The method primarily involves predicting 

the relationship between the total test scores of the focus and reference groups and then testing for 

deviations from this general relationship for the specific item or item group. In this study, we used the 

SIBTEST method, which can work at both the item and item group level, to identify DIF and DBF. To 

interpret the β index for DIF detection based on the SIBTEST method, Roussos and Stout (1996) 

proposed a classification. A β index value smaller than 0.059 indicates no DIF, a β index smaller than 

0.088 indicates moderate DIF, and a β index equal to or greater than 0.088 indicates high-level DIF. 

While a classification for effect size is possible for DIF, no such classification exists for DBF. 

Results 

In response to the first research question, “What is the level of local dependence among the 

three testlets in the mathematics subtest?”, the analyses showed that the local dependence levels of the 

testlets were moderate (σ > 0.5). Specifically, the two-item testlet 1, the four-item testlet 2, and the six-

item testlet 3 all exhibited moderate levels of local dependence. The local item dependence caused by 

the testlet is referred to as the “testlet effect” (Wainer & Kiely, 1987). As variance increases, the effect 

created by testlets also increases (Wainer & Wang, 2000). The variance values are interpreted as follows: 

0 indicates “no testlet effect,” 0.5 indicates “moderate testlet effect,” and 1 indicates “large testlet effect” 

(Wang, Bradlow ve Wainer, 2002; Wang & Wilson, 2005). In this study, using the 2PL-TRT model, the 

testlet effects for the three testlets were found to be 0.575, 0.505 and 0.612 respectively. Although the 

highest local dependence appeared in the third testlet, overall, the local dependencies in all three testlets 

were moderate. As a result, none of the testlets exhibited a significant testlet effect. 

For the second research question, “How is the relationship between the item and ability 

parameters obtained from the 2PL-IRT and 2PL-TRT models in the mathematics subtest consisting of 

testlets?”, the item and ability parameters were first calculated using the 2PL-IRT and 2PL-TRT models. 

The item parameters and their standard error values are presented in Table 1. In Table 1, α represents 

the slope parameter, and δ represents the intercept parameter. 
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Table 1. Item Parameters and Standard Error Values 

  2PL-IRT 2PL-TRT 

Testlet Items α αse δ δse α αse δ δse 

Testlet I ME72041A 4.06 0.77 -0.40 0.06 4.44 1.63 -0.62 0.39 

ME72041B 4.40 0.87 -1.06 0.06 5.91 2.89 -1.84 0.93 

Testlet II ME72081A 1.03 0.16 1.24 0.18 1.57 0.38 1.63 0.31 

ME72081B 0.68 0.13 0.52 0.19 0.98 0.19 0.61 0.13 

ME72081C 0.73 0.13 -0.48 0.17 0.75 0.18 -0.49 0.11 

ME72081D 0.72 0.14 1.12 0.29 0.79 0.20 1.20 0.14 

Testlet III ME72140A 1.76 0.26 1.89 0.12 1.93 0.35 2.33 0.31 

ME72140B 1.84 0.34 3.21 0.19 2.13 0.47 4.03 0.61 

ME72140C 1.64 0.25 2.20 0.15 1.98 0.37 2.85 0.39 

ME72140D 1.02 0.21 2.35 0.38 1.32 0.25 2.83 0.29 

ME72140E 0.75 0.14 0.91 0.23 0.68 0.14 0.94 0.12 

ME72140F 1.48 0.25 2.48 0.20 1.44 0.31 2.74 0.29 

The item slope parameter (α) is interpreted as the item discrimination parameter. Higher values 

indicate that the item is more discriminative (Baker, 2001). Upon examining the parameter values for 

both models, we concluded that for the IRT model the discrimination parameters ranged from 0.68 to 

4.40 with standard errors varying between 0.13 and 0.87. For the TRT model, the discrimination values 

ranged from 0.68 to 5.91, with standard errors varying from 0.14 to 2.89. The item intercept parameter 

(δ) is interpreted as item difficulty, which is the inverse of the item difficulty parameter. A higher value 

indicates that the item is easier (Reckase, 2009). For the intercept parameter, in the IRT model, the values 

ranged from -1.06 to 3.21, with standard errors varying from 0.06 to 0.38. In the TRT model, these values 

ranged from -1.84 to 4.03, with standard errors ranging from 0.11 to 0.93. Table 2 below presents the 

mean, minimum and maximum values for these item parameter estimates. 

Table 2. Descriptive Statistics of Estimated Item Parameter Values 

Parameters 
2PL-IRT 2PL-TRT 

Mean Min Max Mean Min Max 

Slope (α) 1.68 0.68 4.40 1.99 0.67 5.91 

αse 0.30 0.13 0.87 0.61 0.14 2.89 

Intercept (δ) 1.17 -1.06 3.21 1.35 -1.84 4.03 

δse 0.19 0.06 0.38 0.34 0.11 0.93 

As is seen in Table 2 presenting the slope parameters and standard errors for both models, the 

2PL-IRT model shows lower values. This difference in the parameter values is accompanied by smaller 

differences in the standard errors. Similarly, examining the item intercept parameters results in the same 

pattern: the 2PL-IRT model results in lower parameter and standard error values. Additionally, the 

standard errors for the item intercept parameters are found to be lower than those for the discrimination 

parameters. The ability parameters and their corresponding standard errors are presented in Table 3. 

Table 3. Descriptive Statistics Regarding the Ability Parameters and Standard Errors 

Model 
Ability Parameter Value (θ) Standard Error (se) 

Mean Min Max Mean Min Max 

2PL-IRT 0.00 -2.33 1.31 0.45 0.34 0.63 

2PL-TRT 0.00 -1.96 1.25 0.59 0.45 0.70 

As is seen in Table 3, the ability parameters and their corresponding standard error values are 

similar for both models. However, the range of the parameter values for the 2PL-IRT model is wider, 
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while the standard errors are lower compared to the 2PL-TRT model. The relationship between the 

ability parameters obtained from both models is illustrated in the scatter plot shown in Figure 1. 

 
Figure 1. Scatter Plot Graph Regarding Ability Parameter Estimation 

Figure 1 presents the scatter plot of ability estimates obtained from the IRT and TRT models. As 
is seen in the scatter plot, the ability parameter estimates from both models are very similar. While there 
is a high correlation between the slope and intercept parameters, a graphical comparison of these values 
is not included since the estimated values for both models do not lie on the same scale. The correlation 
values between the parameters obtained from the IRT and TRT models are provided in Table 4. 

Table 4. Correlation Values Regarding the Parameters Estimated via IRT and TRT Models 

Testlet Number of Item  α δ θ 

Testlet I  2 

0.983 0.997 0.976 Testlet II  4 

Testlet III  6 

As is seen in Table 4, all the correlation values obtained are quite high (r > .95). Specifically, the 
correlation values are as follows: 0.983 for the slope parameter (α), 0.997 for the intercept parameter (δ), 
and 0.976 for the ability estimates (θ). These high correlation values suggest a strong similarity between 
the parameters obtained from the IRT and TRT models. We first determined the cutoff scores for the 
third research question, “How is the classification accuracy obtained from the 2PL-IRT and 2PL-TRT 
models in the mathematics subtest consisting of testlets?” The cutoff score calculation was based on the 
possible values for the students’ performance in the mathematics test and the four different proficiency 
levels (low, medium, high, and advanced) defined in the TIMSS application to represent the students’ 
behavioural indicators of success. To compare the two IRT models, we determined the proficiency levels 
corresponding to the determined cutoff score. Those below the determined proficiency level were 
classified as “below the level,” and those above were classified as “above the level.” The classification 
was made based on four different proficiency levels, which are “below/above low,” “below/above 
medium,” “below/above high,” and “below/above advanced” as per the TIMSS. The findings related to 
classification accuracy are presented in Table 5. 

Table 5. Values regarding the Two-Category Classification Accuracy 

Model 2PL-IRT 2PL-TRT 

Level Low  Medium High Advanced  Low Medium High Advanced  

Cutoff score (θ) -0.74 -0.32 0.40 1.31 -0.64 -0.21 0.39 1.25 

Classification Accuracy  0.94 0.90 0.93 0.95 0.90 0.93 0.94 0.91 

Classification 

Consistency  

0.91 0.86 0.91 0.94 0.86 0.90 0.93 0.86 
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As is seen in Table 5, the cutoff scores for the 2PL-IRT and 2PL-TRT models increase as expected 

for each level. For the 2PL-IRT model, the cutoff scores are -0.74 for the low level, -0.32 for the medium 

level, 0.40 for the high level, and 1.31 for the advanced level. For the 2PL-TRT model, the cutoff scores 

are -0.64 for the low level, -0.21 for the medium level, 0.39 for the high level, and 1.25 for the advanced 

level. In both models, the cutoff scores increase across levels as expected. This indicates that as students 

progress from the low to the advanced levels, their knowledge increases and the application of this 

knowledge becomes more complex. For instance, a student at the low level is expected to have basic 

knowledge of mathematics, while a student at the advanced level should be able to solve more complex 

problems and provide justifications for their solutions. Therefore, students at the advanced level are 

expected to possess higher abilities. Regarding classification accuracy, slightly higher accuracy and 

consistency were found for the 2PL-TRT model in the two-category middle and higher levels. However, 

for the lower and advanced levels, the 2PL-IRT model showed higher accuracy. Overall, the 

classification accuracy for both models is high and similar, with small differences observed across some 

levels. 

Table 6. Values Regarding Multi-Category Classification Accuracy 

Model 2PL-IRT 2PL-TRT 

Classification Accuracy  0.74 0.73 

Classification Consistency  0.68 0.64 

As is seen in Table 6, for multi-category classification, when the four levels (lower, middle, 

higher and advanced) are considered together, the classification accuracy and consistency of the 2PL-

IRT model are slightly higher than those of the 2PL-TRT model. 

To answer the fourth research question, “Are there any items containing gender based DIF/DBF 

in the mathematics subtest consisting of testlets?”, we used the SIBTEST function from the mirt package 

in the R software. The results for each item and item group are presented in Table 7. 

Table 7. Results of Differential Item and Differential Bundle Functioning 

  DIF DBF 

 Items β p β p 

Testlet I ME72041A -0.012 0.797 
-0.164 0.056 

ME72041B -0.065 0.136 

Testlet II ME72081A -0.062 0.171 

-0.037 0.741 
ME72081B -0.009 0.855 

ME72081C 0.064 0.175 

ME72081D 0.033 0.468 

Testlet III ME72140A 0.016 0.719 

0.137 0.38 

ME72140B -0.007 0.872 

ME72140C 0.056 0.269 

ME72140D -0.052 0.156 

ME72140E -0.055 0.244 

ME72140F 0.074 0.107 

As is seen in Table 7, according to the SIBTEST method, none of the items in the testlets exhibited 

DIF (p > .05), and no item group displayed DBF either. 
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Discussion, Conclusion and Suggestions  

In this study, we modelled the local dependence of three testlets that were both in Booklets 13 

and 14 in the eTIMSS 2019 application for the Türkiye sample using the TRT method (Wainer et al., 

2007). Grouping related items in testlets can reduce cognitive load during the test, which may be 

particularly beneficial for younger age groups (Yen, 1993). Testlets can also provide more detailed 

information about students who struggle in specific areas, potentially enhancing targeted educational 

opportunities. The primary point to examine in such items, which are increasingly used both nationally 

and internationally, is the degree of local independence that reveals the relationship between the items. 

Therefore, the first research question pertains to the degree of local dependence that may exist within 

each testlet. During the analysis, we calculated the effect sizes for the testlets as 0.575, 0.505 and 0.612 

respectively. These values fall within the critical range identified in the literature as indicators of 

moderate local dependence (Li et al., 2006; Wang & Wilson, 2005). Murphy, Dodd, and Vaughn (2010) 

found that IRT and TRT models showed similar performance in testlet-based computer-adaptive tests 

with low to moderate testlet effects. This study suggests that traditional IRT methods can be used 

effectively in situations where the testlet effect is moderate and that these methods may serve as a more 

practical alternative in terms of time and effort. 

The second research question involved a comparative examination of the parameter estimates 

(slope, intercept and ability parameters) obtained from the 2PL-IRT and 2PL-TRT models. The 

correlation between the ability parameter estimates based on the TRT model and the IRT model was 

found to be very high, with a value of 0.976. However, examining the standard errors of the ability 

estimates showed that the IRT model had lower error values. When local independence is violated in 

IRT models, ability estimates are typically obtained with lower standard errors (Chang & Wang, 2010; 

Eckes, 2014; Koziol, 2016; Wainer & Wang, 2000). Additionally, we concluded that the relationship 

between the slope and intercept parameters was also quite high (r > 0.98). The moderate level of local 

dependence between the items within the testlets may have contributed to the high alignment between 

the parameter estimates derived from the models. In conclusion, a comparative examination of the 

analyses performed using the IRT and TRT models allows for a more effective design of testlets, 

especially in K-12 assessments. 

In the third research question, we examined classification accuracy results using the IRT and 

TRT models. In this study, we performed two-category classifications, such as “below advanced level” 

and “above advanced level” for each level. For classifications requiring four levels—low, medium, high 

and advanced—we defined cutoff scores for each level. The cutoff scores for the two-category 

classification increased as expected in each model with the increase in the level. While cutoff scores in 

studies examining classification accuracy with different IRT models have been found to be quite similar 

(Lee, 2010; Zhang, 2010), in this study, the cutoff scores of both models differ from each other, except at 

the high level. Overall, we found out that the classification accuracy and consistency obtained from both 

two- and multi-category classifications were very high, and both models produced highly consistent 

results. For two-category classifications, the analysis based on the cutoff scores for medium and high 

levels showed better classification accuracy with the 2PL-TRT model. However, multi-category 

classification accuracy and consistency were lower than the two-category classification values. This is 

because the number of defined levels is an important criterion in calculating classification accuracy and 

consistency (Lathrop & Cheng, 2014). The current study findings indicate that the TRT model performs 

better than or equivalently to other approaches in terms of classification accuracy, especially when 

strong item set effects are present in the data (Keller et al., 2003; Zhang, 2010). However, in Koziol’s 

(2016) study, although IRT and TRT models yielded similar performances under small testlet effects, 

the classification accuracy percentages were found to be lower under large testlet effects. Therefore, in 

this study, similar and high classification accuracy percentages may have been obtained due to the 

absence of significant local dependence within the testlets. 
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In the fourth research question, we examined whether testlets demonstrate Differential Item 

Functioning (DIF) based on gender both at the item level and the testlet level using the SIBTEST method. 

The reason for selecting this method is that IRT-based approaches are suggested to be more robust than 

CTT-based approaches (Hambleton & Swaminathan, 2013). However, IRT-based approaches require 

the assumption of local item independence, which is increasingly difficult to meet as modern test design 

increasingly shifts towards the use of testlets (Ferne & Rupp, 2007; Wainer & Lukhele, 1997). In such 

cases, one of the applicable methods, the SIBTEST method, was used to apply DBF analysis. This study 

aimed to compare the results when testlets are considered both as independent items and as item 

groups, which is why the SIBTEST method was used for this comparison. When items were considered 

independently and as item groups, no items or testlets demonstrating DIF or DBF were found. This may 

be due to the presence of low to moderate item set effects within the testlets. 

In conclusion, the correlation of parameter estimates, classification accuracy and DIF results in 

this study were found to be quite similar in both standard IRT and testlet-based IRT models. However, 

the IRT models yielded lower standard errors and higher classification accuracy percentages. Therefore, 

it is essential to continue the analysis by determining whether the conceptual advantages of testlets 

outweigh the statistical disadvantages. In general, if the performance decline is negligible, the 

advantages of these tests may outweigh their disadvantages. The literature includes several studies 

comparing parameter estimation in one-dimensional IRT and TRT models (Bradlow et al., 1999; Glas et 

al., 2000; Wainer et al., 2000; Wainer & Wang, 2000). However, there is a lack of studies investigating 

classification accuracy and DIF between these models. Therefore, future research should focus on 

methods for determining DIF in testlets and classification accuracy when high testlet effects are present. 

Particularly, studies can explore classification accuracy for situations with high testlet effects and items 

exhibiting DIF. Moreover, the observed similarities in classification accuracy between IRT and TRT 

models may be limited to the specific cutoff scores used. As the cutoff score approaches the extreme end 

of the latent ability distribution, classification accuracy may decrease. Therefore, studies can also be 

conducted to assess the impact of the cutoff score on the relative performance of the models. In K-12 

classroom assessments, determining students’ skill levels accurately is critical for teachers to develop 

individualized teaching strategies. The use of testlets can offer a more detailed assessment of various 

skill levels in the classroom. For instance, classifying a student as “below advanced” or “above 

advanced” can help the teacher identify which areas require additional support. Additionally, the use 

of multi-category classifications in K-12 classroom assessments can allow for a more detailed tracking 

of student progress, although it may require a more careful analysis in terms of classification accuracy. 

Testlets at the K-12 level offer significant advantages, such as increasing measurement accuracy, 

shortening test duration, ensuring uniqueness, aligning with learning objectives and enhancing 

reliability. These benefits are supported by various studies that highlight the potential of testlets to both 

support learning and assessment. While taking advantage of these benefits, it is essential to consider 

their impact on psychometric analyses. Therefore, it is believed that this study will serve as a guide for 

future research on similar topics. 
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