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Abstract  Keywords 

This article aims to document the discovery of sociomathematical norms 

by prospective teachers in a technology and inquiry based classroom, and 

the role played by the instructor in this process. The findings are obtained 

from the dialogs between the prospective teachers and the researcher as 

well as from classroom communications observed during a 5-week long 

instructional period that was focused on teaching circle properties. After 

the transcription of these communications, the repeating patterns of 

explanations, interpretations, proofs, and argumentations are extracted 

which are then classified as sociomathematical norms based on the existing 

theoretical frameworks. Special emphasis was put on three norms that 

relate to using technology. These norms were (1) inquiring about the 

effects of a change made in a question or a solution; (2) reaching 

conclusions by using the properties of the tools in the dynamic software; 

and (3) dynamically verifying a solution or a hypothesis. It is hoped that 

the findings of this study can help other researchers, teachers, teacher 

candidates, and instructors that educate teacher candidates who desire to 

create inquiry based teaching and learning communities that have 

established sociomathematical norms. 
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Introduction 

A traditional teaching method is the IRE script where the teacher initiates, the students respond, 

and the teacher evaluates (Mehan, 1979). This type of teaching is still the norm in most classrooms (Black 

& Wiliam, 2009). However, the recent research highlights the importance of a social classroom 

environment for effective teaching and learning. Studies suggest that learning is a product of social 

interactions within the members of a classroom community as well as individual reasoning, and 

therefore the environments which promote social interactions positively affect the process of learning 

(Cobb, Stephan, McClain, & Gravemeijer, 2011; Stephan & Akyuz, 2012; Stephan, Bowers, Cobb, & 

Gravemeijer, 2003). 

In social classrooms students solve problems through inquiry. Inquiry is the process of 

wondering about an unknown subject or a problem, investigating, and attempting to answer it through 

cooperation with others (Wells, 1999). Chapman (2011) considers inquiry as a tool which can help 

students learn mathematics. She defines an inquiry-based environment as student-centered, rich in 

communication and cooperation, and based on research and asking questions. Despite the significant 

role of the teacher in creating inquiry-based environments (Johnson, 2013), it is observed that they face 

considerable difficulties in establishing and maintaining such an environment (Stein, Engle, Smith & 

Hughes, 2008). An important reason for this difficulty is suggested as the need for the teacher to 

effectively deal with and coordinate discussions that may ensue from a potentially large number of 
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solutions that may be proposed within the classroom (Leinhardt & Steele, 2005). Teachers’ lack of 

sufficient concept knowledge accentuates this problem. Furthermore, teachers’ perception about 

mathematics that it is a set of rules and procedures and their belief that mathematics can only be learned 

with memorization rather than knowledge construction hinders establishing inquiry-based 

environments (Handal, 2003). 

Different ways of behaviors that students adopt in such social classrooms are generally termed 

as social norms. (Cobb, Yackel & Wood, 1992). They define what is expected from the student in 

classroom discussions and what are appropriate or inappropriate ways of behaving. Among some 

examples of social norms are explaining a proposed answer, sharing alternative solution strategies, and 

expressing disagreement with others’ solutions politely (Yackel & Cobb, 1996, Özmantar et al., 2009). 

Social norms are established through the joint effort of the teacher and the students and it is expected 

that each classroom community may have its own set of social norms. 

Another type of norms that are specific to mathematics classrooms are called sociomathematical 

norms (Yackel & Cobb, 1996). These norms define the normative aspects of mathematical 

argumentations. For example, differentiating what is a mathematically different, elegant, or efficient 

solution can be considered among sociomathematical norms (Yackel, 2002). To clarify, in any subject 

matter a different solution/answer than those already provided can be given. This constitutes a social 

norm. However, proposing a mathematically different solution belongs to the realm of 

sociomathematical norms (Yackel, Rasmussen, & King, 2000). Sociomathematical norms are formed as 

a result of individuals’ beliefs, values, and opinions related to mathematics. However, this relationship 

is reflexive in that in a classroom where sociomathematical norms are promoted individuals’ beliefs, 

values, and opinions toward mathematics may change (Bowers, Cobb & McClain, 1999). Similar to 

social norms, it is expected that each classroom microculture may develop its own set of 

sociomathematical norms (Kazemi & Stipek, 2001). 

Norms are typically identified based on the extent to which they are exercised within the 

classroom. Sfard (2008)’s theoretical perspective can be used for this purpose. According to this 

framework, for both social and sociomathematical norms to be counted as such they must be adopted 

by most of the classroom members and they must exhibit themselves clearly throughout the classroom 

discussions. As such, they are different from the rules or demands of the teacher; they must be 

internalized by the students themselves. 

Recently, due to the increased use of technology in mathematics education, an important 

question that arose is how to effectively integrate technology in inquiry-based social classrooms. The 

research indicates that the effective use of technology may support inquiry-based education (Goos, 

Galbraith, Renshaw & Geiger, 2003; Hahkiöniemi, 2013). However, it is observed that teachers face 

difficulties for integrating technology into inquiry-based education (Drijvers et al., 2010). Beliefs of some 

teachers that mathematics is a set of procedures that must be memorized (Handal, 2003) or that 

memorization is essential in fulfilling the curriculum (Obora & Sloan, 2009)  are seen as important 

obstacles for these teachers integrating technology and inquiry-based education. Another reason which 

impacts this integration is the lack of technological pedagogical content knowledge for many teachers 

(Mishra & Koehler, 2006). In order for the teachers to use technology effectively their content 

knowledge, pedagogical knowledge, and technological knowledge must be strong together and lesson 

plans must be adapted accordingly (Bowes & Stephen, 2011). Zbiek and Holllebrands (2008) highlight 

the importance of choosing the right problems in order to engage students in effective classroom 

discussions using technology. They argue that if right problems are chosen, teachers can support 

sociomathematical norms by using technology by asking students to share their solutions in a way that 

is accessible to all members of the classroom community. Despite these findings, the number of studies 

that investigate the social and sociomathematical norms in technology enriched classrooms is limited 

(Herskowitz & Schwarz, 1999; Pierce & Stacey, 2001). In particular, there is a lack of studies that 

investigate the sociomathematical norms developed by preservice teachers in an inquiry-based 

classroom that uses technology. Studies involving preservice teachers are especially important in that 
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they will be more likely to be motivated to establish social and sociomathematical norms in their future 

classrooms.  

Among many types of technology, dynamic geometry environments (DGEs) or software (DGS) 

open a new perspective in teaching and learning geometry (Healy & Hoyles, 2002; Straesser, 2002). 

DGEs allow users to create geometrical constructs such as lines, polygons, and circles and make 

interactive modifications on them. Among these modifications dragging, which is the process of 

modifying the shapes by moving their keypoints, has been the focus of many studies (Hölzl, 2001; 

Sinclair, 2004). These studies reveal that dragging is a pedagogical tool that facilitates understanding of 

mathematical reasoning, particularly in the process of generating conjectures, checking the validity of 

new problem situations, and generalizing the problems. Other types of interactive modifications include 

transformations such as translation, rotation and reflection (Abu Bakar, Ayub, Fauzi, & Ahmad Tarmizi, 

2010). It has been shown that DGEs afford rich learning opportunities for proving conjectures as well 

(Laborde, 2000). DGEs are becoming more widely used thanks to open initiatives such as Geogebra2 

which are free and support numerous languages.  

The main purpose of this study is to document the development of sociomathematical norms 

in a preservice teacher education course (course name: Exploring Geometry with Dynamic Geometry 

Applications) that uses inquiry-based teaching and learning in a technology-supported environment. 

More specifically, this study seeks the answer of the following research question: What are the 

technology related sociomathematical norms that are developed within an inquiry-based teaching and 

learning environment that uses dynamic geometry software for teaching circle properties to junior and 

senior level preservice mathematics teachers? Given the increased importance attributed to using 

technology (and especially dynamic geometry) in mathematics education and modern teaching 

approaches that utilize inquiry, it is hoped that the findings can help other researchers, teachers, and 

teacher candidates establish similar environments in their classrooms. This study is one of the first 

studies which aim to identify sociomathematical norms during the instruction of a course using 

dynamic geometry. 

Method 

Participants    

This study includes ten junior and senior level college students from a large public university 

in Ankara, Turkey. Data is collected during an elective class which had the objective of teaching 

prospective teachers how to teach geometry effectively using DGS. All class sessions were conducted in 

a computer lab. Among the 10 students, 2 were senior and 8 were junior level. Their Grade-Point 

Averages (GPAs) were evenly distributed suggesting that they had different achievement levels. 

Data Collection 

The classroom sessions were conducted twice a week with each meeting two hours (4-hour per 

week). The data was collected during the 5-week part of the course that focused on the circle topic. All 

classroom sessions were video-taped. The research team comprised of a masters and two doctoral 

students along with the researcher met after every class and these meetings were also recorded. The 

students’ homework assignments during this 5-week period were collected. These assignments allowed 

the research team to assess students’ development and make necessary modifications in the 

instructional activities. Finally, the presentations made by each student at the end of the topic were 

video-taped. In these presentations, the students designed activities about the circle topic and asked 

their friends to solve them (i.e. they took the role of the teacher). 
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Course Content 

Before the beginning of the instruction, the researcher prepared the content of the course as a 

series of activities according to the realistic mathematics education (RME) theory (Gravemeijer, 1994). 

The key aspect of the RME theory is to teach mathematics by connecting it with students’ real-life 

experiences. Therefore, RME involves mathematization of a real-life concept. However, this does not 

mean that the concept must be based on the real-world but rather that students must be able to image 

it (therefore an imaginary science-fiction scenario might very well be used for RME). The current study 

began with an archeological excursion scenario but used other real-life concepts such as the solar eclipse. 

The initial activities are reviewed by the research team comprised of the researcher and three assistants 

who met after every class session and made changes based on the performance of the students. In the 

preparation of these activities, the researcher first partitioned the curriculum into sub-topics according 

to their order. Then for each sub-topic several RME based activities were created resulting in a total of 

16 activities. These activities involved various circle tasks such as determining the relationship between 

an inscribed and central angle, understanding properties of a cyclic quadrilateral, locating the center of 

a circle, determining whether a given set of points lie on a circle, finding the number pi, computing the 

distance covered by a circle as it rolls on a flat surface, understanding the relationship between the 

number of rotations and the radii of various circles, computing areas of sectors, constructing tangent 

and secant lines, solving Regiomontanus' angle maximization problem, finding the trajectory of the 

midpoint of a ladder as slides down a vertical wall, determining where two circles that are rotating 

toward each other intersect, computing the shadow of a circle on another circle as in the case of a solar 

eclipse, and assessing when the ratio of a chord to the corresponding arc becomes the maximum. In 

post-class discussions sometimes these activities were revised, reordered, some of them were removed 

or new activities were added. Most activities were created by the researcher based on the literature and 

relevant examples from textbooks (Johnston-Wilder & Mason, 2005). In the preparation of these 

activities, special care was placed on them having multiple solutions which can be explored using DGS. 

Some activities were directly created on the DGS while others were created on the paper and students 

were expected to construct them during the class. 

For a month before the beginning of the circle topic, the researcher tutored students about 

Geogebra through several activities that included various geometrical topics such as triangles, 

quadrilaterals, and transformations. These activities not only helped students to become competent 

with the software but also helped establishing classroom social norms. These norms included (a) openly 

expressing disagreement when necessary; (b) teacher’s repetition of students’ solutions to make them 

clear for everybody; (c) asking students that have different solutions to share their solutions; and (d) 

students’ recreation of different solutions proposed by their friends on their own computer. The 

establishment of these norms allowed the inquiry-based education to become more effective. 

Data Analysis 

In the first phase of the analysis, the video and voice recordings were transcribed and coded. 

The researcher’s statements were coded using T and an increasing number such as T1, T2, T3, etc. 

Students’ statements were coded using letters B through K (for a total of 10 students) followed by 

successive integers. The assistant’s expressions were coded by A and students’ joint responses were 

coded by Z again followed by numbers. 

After the coding process, the transcripts were analyzed to find repeating patterns of student 

behaviors. Sfard (2008)’s aforementioned theoretical perspective was used in this process. In order to 

identify norms, the candidate behaviors were put under investigation to ascertain whether they fit into 

Sfard’s criterion. For clarity, this process will be briefly explained with an example. During the 

discussion of an activity which asked the students to explore the relationship between an inscribed angle 

and the corresponding central angle, one of the students offered the following explanation: 
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E1: You can also use the property that an exterior angle is the sum of the two interior angles. 

E1 made this response after hearing a different explanation made by J1. This observation made 

the researcher suspect that proposing an alternative mathematical solution may be a sociomathematical 

norm. Later in another activity the following student response was observed: 

K11: Can we do this? Instead of drawing the tangents from the left can we draw them from the 

right? 

This proposal was again made after J11 concluded his explanation about how to find the center 

of a circle using tangent lines. This strengthened the suspicion that proposing an alternative solution 

may indeed be a sociomathematical norm. Subsequent dialogues confirmed this suspicion. For instance, 

one student offered the following alternative solution during an activity which asked to find the tangent 

point on a circle: 

D7: Wouldn’t it have worked as well if we randomly drew a line and measured if the angle is 

90 degrees? 

In the subsequent activities several other examples of proposing alternative solutions were 

exhibited by other students as well. This led the researcher to conclude that the observed behavior of 

autonomously proposing an alternative mathematical solution had become an established 

sociomathematical norm. It was considered sociomathematical rather than social because the alternative 

solution must have been mathematically different.  

Contrary to the above example, in many cases an initially suspected behavior was discounted 

as a norm due to not being sufficiently prevalent. For example, one of the candidate norms, “expressing 

that a mathematical rule must be known by the classroom members before being used”, was rejected as 

a sociomathematical norm as it was only observed to be performed once by a specific student (as such 

it was not adopted by the classroom community at large).  

To distinguish sociomathematical norms from social norms, the degree to which it involves 

mathematics (i.e. specific to a mathematics classroom) was used as the decision criterion. To this end, 

whether such a statement makes sense in a non-mathematics classroom was investigated. For example, 

one of the investigated norms was “sharing a solution/answer without being certain”. This behavior 

was exhibited several times throughout the instructional sequence. Some examples are given below: 

J17: I have an idea but I couldn’t do it [starts explaining] 

G20: I’ve thought of a way but I guess it doesn’t work [shares the idea] 

C16: I’m not exactly sure and would be happy if my friends help [shares the solution] 

An investigation of these statements reveals that they are not specific to mathematics. Such 

behaviors may well be observed in history or in physics classrooms as well. Therefore, this norm was 

classified as a social norm rather than sociomathematical norm. To summarize, in order to identify the 

sociomathematical norms discussed in the next section the following three-stage process has been used: 

1. Evaluate whether a suspected behavior is exercised `sufficient` number of times within the 

classroom. Here, there is no rule for how many times is sufficient but it must be exercised 

multiple times by multiple students throughout the instruction. 

2. Evaluate whether the norm involves mathematics. For this purpose, answer the question of 

whether this norm may have been exhibited in a non-mathematics classroom. If the norm is 

not specific to mathematics, classify it as a social norm. Otherwise it is a sociomathematical 

norm. 

3. Evaluate whether the norm involves technology. In other words, assess whether the fact that 

this course was taught using technology may have played a role in the development of this 

norm. If so, identify this norm as a technology related sociomathematical norm. Otherwise 

identify it as a general sociomathematical norm. 
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Findings 

In this section, the sociomathematical norms that were found by using the aforementioned 

theoretical perspective during a 5-week long circle topic are shared. However, the focus is put on three 

specific norms that were related to using technology as this was a distinguishing aspect of the current 

study. 

Sociomathematical Norm 1: Inquiring about the Effects of a Change Made in a Question or a 

Solution 

This norm may include mathematical inquiries such as “what would have happened if the given 

circle had double the radius” or “what if we were given two points instead of three” as well as 

technology related ones such as “would the results have changed if we dynamically moved the position 

of the circle”. The importance of this norm comes from the fact that it shows that students not only solve 

the current question but also want to explore alternative situations to gain a deeper understanding of a 

problem or a solution. One of the dialogues that evidence the establishment of this norm was seen 

during the third activity of the first class. This activity is shown in Figure 1. 

F2: First, I found the intersection of the line and the circle. Next, as the line that passes through 

the center and perpendicular to this chord divides this chord into two equal parts, I found the midpoint 

of this chord [calls this T]. Finally, I draw a perpendicular line through T (Figure 1 (b) and (c)). 

K6: But it disappears if we move the line. 

F3: It is visible when you move it on top of the circle. 

K7: What if we move the circle itself? 

F4: It still doesn’t matter, it divides into two. 

Z4: Wherever we put the circle it divides it into two equal parts. 

Figure 1. This activity asks where the cutter should be positioned so that it cuts the circle into two 

equal parts. The bar on which the cutter is placed can move left and right. The cutter can move up and 

down on this bar. 

Here one of the students (F2) explains that in order to find the correct location of the cutter, she 

first finds the intersection of a vertical line and the circle (Figure 1 (b)). Next, she finds the midpoint of 

the chord created by this intersection (calls this midpoint T). She argues that if a perpendicular line is 

drawn to this chord through T it will divide the circle into two equal parts. However, K6 argues that 

these lines are lost if the initial vertical line is moved sideways (this is because when the vertical line no 

longer intersects the circle the chord and all dependant drawings vanish). F3 responds by saying that 

this vertical line must intersect the circle. Next, K7 inquires what would have happened if the circle was 

moved instead of the vertical line. F4 and Z4 respond by saying (and showing) that regardless of the 

position of the circle a line perpendicular to the chord and that passes through its midpoint will always 

cut the circle into two equal parts. In this dialogue the statements that support the norm in question 

were found to be the inquiries made by K6 and K7 about what would have happened if the 

configuration were to change. 

 

(a) 

 

(b) 

 

(c) 
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Another example that supports the same norm was observed during the second class – fourth 

activity (Figure 2). This activity asks whether the given points (symbolizing archeological excavation 

sites) reside on a circle or not. The following dialogue was observed during the solution: 

H4: I took two points that are outside. I drew tangents from these points and found their 

intersection with the arcs. If I draw perpendicular lines from these points their intersection gives me the 

center. 

E10: If these were not the arcs of a circle you wouldn’t be able to draw the tangent, right? 

T40: Yes. How else can we solve without connecting the points? 

   

Figure 2. This activity asks whether the given four points symbolizing archeological excavation sites 

reside on a circle and if they do what should be the center of the circle. 

Here, H4 first connects the dots assuming that they lie on a circle and then draws two tangent 

lines from a point outside of the circle. He then argues that the intersection of the perpendicular lines 

that are drawn from the tangent points would give the center of this circle. However, E10, by asking 

that whether the same conclusion could be drawn had the points did not reside on a circle, questions 

about the effects of a configuration change on the proposed solution.  

The second part of the same problem asks about how many points at minimum are required to 

ascertain whether the given points lie on a circle. After a period of individual activity and some 

discussions the students reached the conclusion that 3 points at minimum would define a unique circle 

and explained this algebraically (J25: Circle equation has three unknowns. We need three constraints to 

determine these three unknowns). The teacher then asked about how else this could be explained. The 

following excerpt is taken from the ensuing dialogue:   

T63: Is there a different way? 

H11: Let’s consider a point that is closest to the given points. For instance, if we had two points 

this point can be on the right or on the left. 

T64: Did we understand this? He is saying if we are given two points I can find multiple points 

that are at the same distance to them. But, if I have three points there is only one such point. How do 

we know three is enough? 

H12: Three is minimum; it can be four or five as well. 

Here H11 argues that if we were given two points instead of three the circle that passes through 

them can be to the left or to the right. The teacher then asks what is special about three and H12 replies 

that three is the minimum number but it would not hurt to have more points. As it can be seen from 

these dialogues, the statements H11 and H12 first inquire and then answer about what might happen if 

the configuration was different.  

Throughout the study, there were many other examples of inquiries about what could happen 

if a change was introduced to the question, solution, or the configuration in general. Therefore, based 

on the adopted theoretical framework, this repeating behavior was considered as a sociomathematical 

norm. The investigation of multiple situations and effects of changes made are considered as important 
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as it shows that students were not merely using what is given to them but they were actively exploring 

possible variations. This allowed them to reach more general conclusions from a specific problem. 

It can be argued that students’ development of this norm may be effected by the teacher’s 

insistence for finding different solutions. Some examples are visible in the above transcripts. For 

example, in T40 the teacher asks about how the problem could be solved without connecting the points 

(thus making a change in the proposed solution). In T63, the teacher asks for a non-algebraic solution 

after a student explains his algebraic approach. In T64, the teacher questions what makes students 

believe that 3 points are enough to uniquely define a circle. In general, the teacher had demonstrated a 

similar behavior throughout the entire semester. It is likely that this approach made inquiring about 

variations in a question or a solution to be a very natural response which became embraced by the 

classroom community itself. Due to the mathematical nature of these inquiries, this behavior was 

considered as the first identified sociomathematical norm. Furthermore, this norm is attributed to 

technology as investigating different scenarios was facilitated by the use of the DGE. 

Sociomathematical Norm 2: Reaching Conclusions by Using the Properties of the Tools in the 

Dynamic Software 

This norm pertains to the behavior of solving questions by using the properties of the tools 

provided by the dynamic software that would otherwise be difficult to do on the paper. Using the tools 

of the dynamic software for solving questions was one of the most commonly exhibited behaviors by 

the students and hence identified as a norm. This norm exhibited itself in two forms. In the first form, 

students directly used a tool to compute an answer but did not reason about why or how the tool works. 

For instance, by using the “tangent tool” students could draw a tangent line to a circle from a point 

outside of the circle. In the second form, students used various tools to indirectly compute an answer. 

For instance, instead of using a tangent tool, students first made a distance computation and drew 

another circle whose diameter matched the computed distance. The tangent point was computed as the 

intersection of the two circles. This second form was considered as a more elaborate and preferred 

solution. In general, the researcher tried to discourage the first form of this norm as it did not contribute 

to mathematical understanding. 

An example to this norm is given below. Here, the activity asks that where the shadow of a 

clock that sits on a horizontal plane would fall due to a light source whose position can be dynamically 

changed (Figure 3). The dialogue below shows the dynamic geometry solutions proposed by the 

students when the light source is at position A: 

Figure 3. This activity asks where the shadow of the clock would fall with respect to a light source 

whose position can be changed from A to B. 

G11: First I drew a circle. Then I drew a tangent to this circle. I took this point as the tangent 

may pass through both from the bottom and here (point F in Figure 3). Finally, I intersected these with 

the x-axis on which the clock sits. 

T126: How else can I do it without using the property of the tangent tool? 
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F20: According to the tangent’s property, a line segment through the center must be the angular 

bisector. 

T130: Does everybody remember? Is there such a property? 

Z17: Yes. 

F21: Therefore I first found the angle [calls this alpha]. If I rotate point D around F by 2*alpha, I 

can find the other arm of the angle (Figure 3). 

T131: How else can I do it? 

F22: I can use symmetry and then combine. 

[Here some students that do not understand this proposal ask for clarification and F explains in 

more detail.] 

T133: Ok, let’s look at your solution. If there are other proposals we can discuss later. 

H22: I first drew the circle and then put the light. I want to take integer coordinates. First, I drew 

a line segment that connects the light with the center of the circle. Then I drew a line perpendicular from 

the light down to the circle and found the point of intersection as G [the tangent point]. Next, I drew a 

line perpendicular from G to the first line segment through the center. I formed an isosceles triangle 

[which gives the second arm]. 

In this question, most students observe that the shadow of the clock would fall between the 

intersection points of the tangent lines from the light and the x-axis. To find these points, G11 proposes 

to use the tangent tool in the software. The teacher then asks how this can be solved without using the 

tangent tool. F20 argues that based on a rule that she remembers the line segment that connects an 

outside point with the center of the circle becomes the angular bisector of the angle formed by two 

tangents from that point. Therefore she first connects the light position with the center of the circle. Then 

she measures the angle between this line and the tangent line that goes down vertically from the light 

(calls this angle alpha). Then by rotating this tangent line around the light position by twice this angle 

she obtains the second tangent. The teacher then inquires about an alternative solution to which F22 

replies by saying she could also use symmetry. The ensuing discussion reveals that by symmetry what 

she meant was finding the reflection of the first tangent with respect to the line that connects the light 

to the center of the circle. Finally, the teacher asks H to share his solution. H22 explain that if he draws 

a line perpendicular from point G to the segment FA, the intersection of this line with the circle gives 

the second tangent’s intersection point I (see Figure 3). He bases this argument on the fact that the FGI 

triangle is isosceles. 

As can be seen in this example, the students used the properties of four different tools in solving 

this problem: drawing a tangent from a point to the circle (G11), rotating a line around a point by a 

specified angle (G21), reflection transformation (F22), and drawing a perpendicular line from a point to 

a segment (H22). It can be argued that the first of these four solutions is more rudimentary compared 

to the other three as it simply involves using a tool without basing it on any mathematical property. The 

other solutions are more sophisticated in that although the tools afforded by the software are used they 

require understanding of several different mathematical ideas. As this example demonstrates, different 

ways of using the software tools may give clues about the level of students’ mathematical 

understanding (F and H appear to have a better grasp of the tools as well as the geometric rules). The 

appearance of these sophisticated solutions seems to be caused by the teacher’s repeated inquiry for 

alternative solutions (T126, T131, T133). 

Another example of this norm can be seen in the excerpt below. This activity asks what type of 

trajectory would the midpoint of the ladder make as it slides left on the ground (Figure 4). 

J38: First, I found the midpoint of BC. Then I drew a segment that connects this point with the 

origin. When I trace point F it looks like the arc of a circle.  I rotated the AF segment. By connecting the 

rotation angle to a slider I covered many different values.  

T152: Let’s do it. 
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J39: I rotate the segment by alpha. It gives a circle. 

[At this point students talk for a while] 

T154: Ok, why this gives us a circle? 

K40: In any right triangle we can find the median from the midpoint. Here AF is the median. In 

a right triangle, the median is equal to the parts it divides. And because these parts remain constant so 

does the median giving us a circle. 

 

 

 

Figure 4. This activity asks what type of trajectory would the midpoint of the ladder make as it slides 

left on the ground 

In the solution of this question, J38 first finds the midpoint of the ladder (point F) by using the 

midpoint tool in the software. Next, he connects this point with the origin. When he traces this point, 

he observes that the resulting trace resembles a circle. Here it can be seen that the student was initially 

uncertain about the trajectory but he gained confidence by using the trace tool in the software. After 

this, the teacher asks about why the resulting shape could be a circle. K40 argues that in a right triangle 

the median is equal to the parts that it divides and because these parts remain constant regardless of the 

position of the ladder so does the median. Hence this median can be considered as the radius of a circle 

centered at A. 

An important point that is constantly observed in these examples (and other examples 

supporting this norm) is the teacher’s inquiry about why a solution developed by using a tool is correct. 

This compelled student to go beyond a tool based solution and investigate the mathematical principles 

that underlie it. 

Sociomathematical Norm 3: Dynamically Verifying a Solution or a Hypothesis 

This norm involves dynamically changing a figure to verify whether a hypothesis is correct or 

not. The students exhibited this norm to either illustrate that a solution that they are confident about 

works for the general case or to build confidence about a less certain hypothesis. The excerpt below is 

taken from a session where this norm was observed. Firstly, K1 makes the following observation for a 

question which asks the relationship between an inscribed angle (angle made by two chords) and a 

central angle (Figure 5): 

K1: First let’s draw an isosceles triangle. Next, because these angles are equal so are the 

corresponding arcs. I can show this dynamically changing the position of the points. 
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Figure 5. This activity asks how much the field of view angle of a camera should change when a 

photographer who was originally at point A and capturing his friends on the chord BC moves to point 

O (center of the circle). 

In this solution, to show that a central angle is twice the size of an inscribed angle that sees the 

same arc, K1 first draws an isosceles triangle. Next, she measures the exterior angle of this triangle to 

the left of the center of the circle and argues that the angle to the right is equal to this angle. From here 

she observes that the sum of the two interior angles is equal to the opposite exterior angle (and because 

the interior angles are the same for a circle, they become half of the exterior angle). Finally, she drags 

the points dynamically to show that this relationship holds for different isosceles triangles.  

In other activity that was discussed earlier, the question asks how to cut a given circle into two 

equal parts (Figure 1). A possible solution proposed to draw two tangents to the circle from a point on 

the bar and intersect perpendiculars drawn from the tangent points to find the center of the circle. The 

following dialogue is taken from the subsequent discussion: 

H2: From this intersection point let’s draw a perpendicular to the cutter and find their 

intersection. 

E8: But then we didn’t use our other drawings. 

H3: We used them to find the center. 

J16: Ok, now it works. 

E9: Move the circle.   

Here, H2 proposes to move the cutter to the point which is at the intersection of a vertical line 

drawn from the center of the circle to the bar on which the cutter sits. E8 then argues that the other 

drawings (tangents) are not used. H3 respond by saying that they are used to find the center of the 

circle. Finally, E9 asks to move the circle dynamically to check that whether the proposed solution still 

works for arbitrary positions of the circle. In doing so, she provides an example of this norm. 

Another example that can be given to this norm was observed in the ladder activity discussed 

earlier (Figure 4). Here, J39 had argued that the midpoint of the latter follows a circular trajectory by 

using the trace tool. In the dialogue below, G23 verifies this by dynamically dragging the bottom point 

of the ladder: 

T155: Did you see that it is a circle without tracing? 

Z21: Yes 

T156: How? 

G23: The length of AF does not change. As we move point B it remains 2.5. Then it must be 

radius and it is a circle. 

F29: I think this is where this proof comes from [that median of the hypotenuse is equal to the 

parts it divides]. 

H29: Indeed, it is like the proof of this property. 
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Here, the teacher asks the students how they can conclude that the trajectory is a circle without 

using the trace tool. G23 respond that as she moves the bottom point of the ladder (point B), the length 

of the AF segment does not change and therefore this segment must be the radius and the followed 

trajectory the arc of a circle. The following observations made by F29 and H29 are interesting in that 

they show how the students realized where a property comes from. As the lengths of BF, FC, and FA 

segments remain constant as the point B is moved, they observe that the median drawn to the 

hypotenuse is always equal to the bisected parts; a well-known property of right triangles. 

An important point in this norm is that the teacher must stress that it is not enough to solve a 

question by dynamically changing the figure. Dynamic verification should only be used to develop an 

intuition and it should only help to discover the underlying mathematical principles. 

In this section, the focus was put on sociomathematical norms that involve technology. 

However, other social and sociomathematical norms were observed in the current study as well.  Due 

to space constraints, it is not possible to discuss them at length but they are listed below for the sake of 

completeness: 

 Proposing an alternative mathematical solution 

 Sharing a solution/answer without being certain 

 Supporting a peer’s solution 

 Asking for clarification for a peer’s solution 

The latter three of these norms may be considered as social norms as they may be employed in 

non-mathematics classrooms as well. The first one is considered sociomathematical as it involves the 

notion of mathematical difference. 

Discussion and Conclusion 

This study focused on the identification of sociomathematical norms in a mathematics 

classroom that used technology during the teaching of the circle topic. Special emphasis was given on 

the norms that involve technology. With respect to existing literature, it can be argued that these three 

norms that are relevant to the combination of technology and mathematics are first identified by the 

current study. These new norms suggest that in mathematics classrooms that integrate technology a 

new type of norms that may be termed as “techno-sociomathematical norms” may be postulated in 

addition to existing social and sociomathematical norms. 

Given that technology becomes more widely adopted in mathematics education (and in every 

other field), understanding such norms may shed light on in which ways students use technology. For 

example, the second norm identified in this study, namely “reaching conclusions by using the properties 

of dynamic software” gives clues about how students actually use technology when solving a problem. 

According to this, if students are not carefully guided by the teachers they tend to solve questions by 

merely relying on the tools that exist in the software without understanding the underlying 

mathematical ideas. Another norm that requires careful observation appears to be the third norm which 

is “dynamically verifying a solution or a hypothesis”. Similar to the second norm, students seem to have 

a premature tendency to show that a solution works by simply dragging the figure and without 

understanding why it works. Transforming these norms into valuable habits seems to depend on the 

teacher. The teacher should not accept such explanations as sufficient but should prompt students to 

use these as intuition-builders for understanding underlying ideas. To this end, the role played by the 

teacher in the current study can be linked to instrumental orchestration which states that the teacher 

has an important guiding role in order for the students to develop correct strategies for using a tool 

(Trouche, 2004). 
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What other responsibilities does the teacher have in order to develop effective norms? Firstly, 

it must be understood that norms are different from the demands of the teacher from the students 

(Levenson, Tirosh & Tsamir, 2009). For establishing effective norms it is not enough to demand them or 

leave students on their own to discover them (Tatsis & Koleza, 2008). In inquiry-based settings, teachers 

have an important coordinating role to help students discuss different solutions effectively and clarify 

them to reach conclusions. If this is not done, that is if the questions that students may have are not 

satisfactorily answered, students may have difficulties in comprehending the subjects (Sanchez & 

Garcia, 2014). Existing studies show that the same norm may get associated with a different norm by 

different teachers. For instance in one study, while both classrooms established the norm of explaining 

solutions, one teacher focused on other students repeating a proposed solution and another teacher 

focused on relating a proposed solution with other solutions (Lopez & Allel, 2007). This highlights the 

importance of the guiding role that the teacher has in establishing different norms.    

Educational programs define mathematics learning environments as one where students can 

inquire, communicate, think critically, and openly share their possibly different ideas (MEB, 2013). Such 

an environment is only possible through norms that support this environment. Although norms may 

change from classroom to classroom, existing research suggest that some norms that promote inquiry-

based environments may be common across classrooms. Identification, sharing, and demonstration of 

these norms are important for other teachers, teacher candidates, and educators who may desire to 

create similar environment in their own classrooms. To serve this purpose, in this study several 

sociomathematical norms that were established during a 5-week long instruction period that is 

integrated with technology are identified and discussed with examples. Among the discovered norms, 

it was observed that some norms appear to be specific to combining technology with mathematics and 

their treatment under a novel theoretical categorization and framework is identified as a future study. 

Additionally, it was observed that these norms are not necessarily useful on their own and can turn into 

useful behaviors only under the correct orientation of the teacher. It is hoped that these findings will 

help teachers, teacher candidates, and educators in general to establish or provide assistance in 

establishing similar norms in other classrooms. 
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