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Abstract 

This study compared two procedures for the vertical scaling in the Item Response Theory (IRT) context: 

fixed estimation, and simultaneous estimation. The results favored the simultaneous estimation procedure to the 

fixed estimation procedure, especially when there were few anchor items. However, the results also revealed that 

using expected a posteriori estimates (EAP) of ability scores in 3-parameter IRT model may have a deteriorating 

effect on the vertically scaled test results through the simultaneous estimation procedure. Overall, the results of 

this empirical study showed that in the large scale tests which aim to monitor the development across grade 

levels, the simultaneous estimation procedure with the 2-parameter or the 3-parameter IRT models would be a 

reasonable choice. 

Keywords: Vertical scaling, item response theory, Bilog-MG, simultaneous estimation 

Öz 

Bu çalışmada, Madde Tepki Kuramına (MTK) dayalı iki dikey ölçekleme yöntemi (sabitlemeye dayalı 

kestirim ve eşzamanlı kestirim) karşılaştırılmıştır. Sonuçlar, özellikle çapa madde sayısının az olduğu 

durumlarda, eşzamanlı kestirimin daya iyi sonuçlar verdiğini göstermektedir. Ancak, 3 parametreli MTK modeli 

kullanılarak öğrenci yeterliklerinin “expected a posteriori” (EAP) yöntemiyle kestirildiği durumlarda dikey 

ölçeklenmiş değerlerde bozulma görülmektedir. Genel olarak bu çalışmanın sonuçları, sınıf seviyeleri arasındaki 

gelişimin takip edilmesi amacıyla yürütülebilecek geniş ölçekli test uygulamalarında, 2 veya 3 parametreli MTK 

modellerine dayalı eşzamanlı kestirimin makul bir seçenek olabileceğini göstermektedir. 

Anahtar Sözcükler: Dikey ölçekleme, madde tepki kuramı, Bilog-MG, eşzamanlı kestirim 
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Introduction 

A measurement scale is a number system with a certain metric on which students’ 

performance on a set of tasks is represented. Accordingly, scores of students in a test can be 

considered as values of such a scale. In item response theory (IRT) applications these scale values are 

called ability estimates or scale scores and they form a basis to compare students’ test performance. 

However, ability estimates are not directly comparable if they are estimated using data from 

different test administrations. To get comparable estimates in such cases some further process is 

necessary, which might consist of some complicated steps, especially when the different tests are of 

different difficulty level and examinees who took the different tests can not be considered as 

individuals from the same population (Stocking & Lord, 1983). The process to determine equivalent or 

comparable ability estimates in such a case is called vertical scaling, which is the main concern of this 

study. In this study vertical scaling is considered in the IRT context. Thus, it might be convenient to go 

over the main points of the issue from this perspective. 

In logistic IRT models, metric of the ability is undetermined (Cook & Eignor, 1991). This 

means that a suitable linear transformation of ability and item parameter estimates can also equally fit 

the IRT model used as the initial parameters. This is just a plain consequence of the mathematical 

structure of the logistic IRT models as described below. 

The logistic IRT models identify the probability of a correct (or incorrect) answer to an item i 

by a person with ability level . These models are basically a function of a( - b) where a and b are 

respectively, the discrimination and the difficulty parameters of item i (Hambleton, Swaminathan, & 

Rogers, 1991). Thus, if the values a, b and  fit the model, their linear transformations of a/x, xb + y and 

x + y will also fit the model equally well for any set of real numbers x and y (provided that x  0). This 

is due to the simple fact that a( – b) is equal to a/x(( x + y) – ( xb + y)). 

To deal with this indeterminacy, the scale in IRT analyses is to be fixed which can be done in 

various ways. For example, in analyses using the 3-parameter IRT model the traditional approach is 

fixing the ability scale such that the mean of the sample  estimates is 0 and its variance is 1. Another 

approach, which is usually employed in calibrations (i.e., the process for estimating item parameters) 

using the Rasch model, is setting the mean of item difficulty parameter estimates to 0. 

However this is only the one side of the story. It is crucial to notice that these scale fixing 

depends on the characteristics of the calibration sample from which the test data comes, and the test 

itself. In other words, fixing the scales in two separate IRT calibrations using the same approach, does 

not assure equivalency of the scales unless the samples and the tests in these separate cases can be 

considered as exactly the same. Otherwise, a further process is required to get comparable item 

parameters or ability estimates obtained through separate test administrations (Cook & Eignor, 1991). 

This process can be one of two main types: the horizontal scaling and the vertical scaling. 

The process is called horizontal scaling if the test forms administered in separate sessions can 

be considered as parallel forms of the same test, and the individuals taking the assorted test forms can 

be considered as random samples from the same population. A language test in which examinees take 

one of the parallel multiple test forms can be considered as an example. On the other hand, if the test 

forms are of different difficulty level and individuals replying the different forms can not be 

considered as samples from the same population then the process is called vertical scaling (Kim & 

Hanson, 2002). 

For example, a mathematics test administration in which students of 6th, 7th and 8th grades 

replies one of the test forms developed with respect to their grade level can be an example. In such a 

case results from the grade-specific test forms are to be placed on a common scale if one intends to 

monitor the growth of individuals across the grade levels. This type of calibration process to provide a 

common scale across test forms of different difficulty and across nonequivalent respondent groups is 

known as vertical scaling. As compared to horizontal scaling, the main difference in vertical scaling is 

that it requires anchor items; that is, common items to be used at both of the consecutive test forms in 

the series. Further information on vertical scaling is provided in the next section. 
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Vertical scaling is far from being a straightforward process yet. The research in this area 

shows that the amount of differences in test difficulty from grade to grade, scaling methods and IRT 

models used in the analyses, methods of estimating scale scores, the number and the psychometrical 

properties of anchor items all have an effect on the vertical scaling process. To make the things more 

complicated some miscellaneous findings in the literature may be found. For example, one can read in 

the literature both that common item anchor should be at least %20 of the total test, and that when 

groups are not equivalent accurate linking can be obtained with as few as 2 anchor items (Vale, 1986; 

Cook and Eignor, 1991). Another finding on this issue comes from simulation studies which show that 

when the sample sizes are large enough, as few as 4 anchor items can precisely equate the scales 

between test forms (Lord, 1980). 

Thus, one who needs vertical scaling in her endeavor will most likely has to deal with all these 

complications to decide on her way in the analyses. In such cases empirical studies that present 

possible impacts of choosing different methods on practical applications would provide a significant 

guide. To this purpose this current study presents effect of a) different linking methods (i.e., 

simultaneous estimation and fixed estimation methods) and b) different IRT scale score estimation 

methods (i.e., maximum likelihood (ML), expected a posteriori (EAP), and maximum a posteriori 

(MAP) on the vertical scaling using the 2-parameter and 3-parameter IRT models, and the estimation 

software BILOG-MG. A real data set of a mathematics achievement test administered to 6th, 7th and 8th 

grade-students was used in the study. The results were evaluated using the estimated proficiency 

distributions. 

Method 

For this study, analyses were carried out with the program BILOG-MG (Zimowski, Muraki, 

Mislevy & Bock, 1996; du Toit, 2003). The data used in this study consisted of 6th, 7th and 8th grade-

students responses to three mathematics achievement test forms which were assigned to the students 

with respect to their grade levels. The further details are as follows. 

Data and Sample 

Test forms for grade 6, 7 and 8 consisted of 40, 45 and 45 multiple choice mathematics items, 

respectively. Tests were constructed by a group of educational experts. Test forms for the 6th and 7th 

grades contained 6 common items. Similarly, test forms for the 7th and 8th grades contained another 6 

common items as well. These common items were used as the anchor items required for the vertical 

scaling. These common items were determined by the educational experts as to be suitable for both of 

the grade levels they were administered. 

Tests were administered by schools at the beginning of the academic-year 2012-2013 to 

determine how ready their students were for the mathematics subjects to be taught during the school 

term. In total, 13002 students in 104 schools sat for the tests. The number of the students who took the 

tests in grades 6, 7 and 8 were 4791, 4412 and 3799, respectively. 

Tests were constructed with respect to the national mathematics curriculum of Turkey (MEB, 

2009). Items were written one year before the intended test administration time, and conducted a pilot 

study. The final version of the tests included only the items that met certain psychometric properties 

in the pilot study. More specifically, items with difficulty values higher than 0.9 or lower than 0.1 were 

avoided, a point-biserial correlation of minimally 0.30 was required, and item information functions 

were investigated to make sure that items provided reasonable amount information. 

All three test forms comprised number, algebra, geometry, and probability items. The items in 

the successive test forms were, in general, increasingly more demanding. For example, an algebra item 

for the 6th grade expected students to solve a simple linear equation involving only one variable, 

whereas an item in the same content area for the 8th grade expected students to solve pairs of 

simultaneous equations involving two variables. However, the test forms also included items that 

were suitable for neighboring grades (i.e., grades 6 and 7, or grades 7 and 8). These items provided the 

anchor items required to link the test forms on a common scale. 
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IRT Models and Estimation 

The 2-parameter IRT model describes performance on a multiple-choice item with respect to 

two parameters: item difficulty and item discrimination. In addition to these two parameters, the 3-

parameter model also takes into account the probability of a correct response to a multiple-choice item 

as a result of guessing (Hambleton, Swaminathan, & Rogers, 1991). 

Logistic models are mathematical functions of the expression )( jjj baz   , which is referred 

to as a logistic deviate, where ja and jb are discrimination and difficulty parameters of item j, 

respectively. Theta in the expression stands for the respondent’s ability. 

The two-parameter logistic model is defined as 
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The three-parameter model as stated in (2) is an extension of the two-parameter model 

considering the probability jg  of a correct response to the multiple-choice item j as a result of 

guessing. 
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The formulas (1) or (2) determine the relationships between item responses and the trait being 

measured. These relationships provide the basis for test scoring. But first, the parameters for each item 

of the test are to be estimated. BILOG-MG uses the method of marginal maximum likelihood (MML) 

to this purpose (Bock & Aitkin, 1981). The process of estimating item parameters and checking the fit 

of the models is referred to as item calibration. 

Estimating respondent’s ability, which is called scale score estimation, follows the item 

calibration in BILOG-MG. In estimating the ability parameters, estimated item parameters at the item 

calibration phase are treated as known constants. Three types of IRT scale score estimation methods 

used in this study are maximum likelihood estimation, Bayes estimation, and Bayes modal estimation. 

Maximum likelihood (ML) estimate of the scale score of respondent i in an n-item test is the 

value of   that maximizes the expression given in (3) (Bock, 2003a).  
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In the expression (3), ijx is either 1 or 0 according as the person i responses correctly or 

incorrectly to item j. )(jP is the IRT model used; that is one of the models given in (1) or (2). 

The Bayes estimate is the mean of the conditional posterior distribution of   which is also 

called expected a posteriori (EAP) estimator. The condition is the observed response pattern. And 

finally Bayes modal or maximum a posteriori (MAP) estimator is the value of   that maximizes the 

expression (4) in which )(g  indicates the density function of population distribution of .  
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Vertical Scaling 

As David Thissen states, “the magic of IRT arises in placing all of the test scores on the same 

scale…” ( 2003; p. 592). The reason why he calls it a magic may lie in the power of IRT models to meet, 

at least to some extent, the strict requirements stated by Angoff (1984) to qualify that the scale scores 

from different tests have been equated. 

IRT vertical scaling is a general name of the procedures for placing results from grade-specific 

test forms on a common scale. It is an application of non-equivalent groups equating in which the 

students are administered a certain grade-specific test corresponding to their groups (Kim, Lee, Kim, 

& Kelley, 2009). 

Vertical scaling may provide a significant opportunity at the school or country level to 

monitor students’ growth on a specific subject across the grade levels. Fixed estimation and 

simultaneous estimation are the two methods that can be conducted for vertical scaling in BILOG-MG 

(du Toit, 2003). Both methods require anchor items between consecutive test forms for the grade 

levels. 

Fixed Estimation. To carry out the fixed estimation in this study, first data from the 6th grade-

test (reference test) was used for the item calibration and the scale score estimation. To deal with the 

scale indeterminacy problem as stated in the introduction section, the ability scale was determined 

such that the mean of the sample  estimates was 0 and its variance was 1. 

In the second step, data from the 7th grade-test (target test) was used for the item calibration 

and the scale score estimation. However, the parameters of the common items between the 6th and the 

7th grade tests were fixed to the values estimated in the first step where data from the 6th grade test 

was calibrated, and were not re-estimated in the second step. The parameters of the remaining non-

common items in the target test were estimated in the item calibration phase. This procedure sets the 

parameter estimates of the items in the target test to the scale of the reference test. Thus, the scale of 

the target test is not indeterminate anymore as it is already aligned to that of the reference test. In 

other words, the estimates are not to be rescaled anymore to have a mean of 0 and a variance of 1. To 

this purpose in BILOG-MG analyses, the FIX keyword in the >TEST command and NOADJUST option 

in the >CALIB command were used. This second step ended with the estimation of the scale scores of 

the 7th grade students. 

The fixed estimation procedure in this study was completed by the third step in which the 8th 

grade-test data was analyzed. This step was conducted in the same way as the second step. However, 

in this step the 7th grade-test was considered as the reference test and the 8th grade-test was considered 

as the target test. 

Simultaneous Estimation. In simultaneous estimation, as compared to the fixed estimation, the 

item and ability parameter estimates for all grades may be put on a common scale in a single run. In 

other words, there is no need for separate linking and scaling steps. 

The underlying principle for simultaneous estimation is as follows: Let n6, n7 and n8 be the 

number of students who responded the tests in the 6th, 7th and 8th grades, respectively. In addition, 

suppose that m6, m7 and m8 are the number of unique items only in the tests for the 6th, 7th and 8th 

grades, and that m6-7 and m7-8 are the number of anchor items between the 6th and 7th grades, and 

between the 7th and 8th grades, respectively. Then, item responses of students in all 3 grade levels are 

entered into a large data matrix of dimensions (n6 + n7 + n8) x (m6 + m7 + m8 + m6-7 + m7-8). In these 

blocks of item responses, items not administered to the corresponding students are treated as missing 

values. The multi-group design of BILOG-MG allows the group of students from different levels to 

differ in the mean and standard deviation of their ability distribution. Then within this design, 

parameters of all the items in the tests and scale scores of all the students in the groups can be 

estimated concurrently (Fischer & Molenaar, 1995).  
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In this study, simultaneous estimation was conducted as defined above. To deal with the 

indeterminacy problem the mean and standard deviation of ability estimates of the 6th grade students 

was determined to be 0 and 1, respectively. The mean and standard deviation of ability distributions 

for 7th and 8th grade were estimated freely, but adjusted by the BILOG-MG with respect to the values 

determined for the 6th grade distribution. 

In this current study, both the fixed estimation and the simultaneous estimation procedures 

were replicated (2 x 3) = 6 times considering the 2 IRT models (i.e., 2-parameter and 3-parameter 

models), and the 3 scale score estimation methods (i.e., ML, EAP and MAP). 

Evaluation Criteria 

In empirical studies on vertical scaling that compare different models, it is often difficult, if 

not impossible, to find an objective basis for deciding which of the models better represents the 

students’ true growth in the construct being measured. This is due to the fact that the true scores of 

the students are not known but only estimated through a measurement model. Moreover, it is a well-

known fact that different IRT models could fit the response data equally well and yet exhibit different 

relationships across the grade level scores (Bock, 2003b). 

The general tendency to deal with this obscurity is building a somehow reasonable basis for 

an evaluation (Kim et al., 2009). In this study, results were evaluated with respect to two criteria. First 

criterion depends on the assumption that, on a vertically equated scale, the average scale score of 

students at a higher grade should also be somewhat higher than the average scale score of students at 

a lower grade. Second criterion depends on the fact that the relationship between IRT ability scales 

derived from two different calibrations is always linear. In other words ability scales derived from two 

different calibrations differ only in origin and unit of measurement (Cook & Eignor, 1991). A corollary 

of this fact is that individually estimated scale scores of a certain grade level (i.e., scores estimated 

using only the test data of a certain grade level) should coincide with the vertically equated scale score 

estimates of the same grade level after a linear transformation that equalizes the mean and the 

standard deviation values of these two estimates. 

Results 

Checking the Model Assumptions 

The IRT models used in this study require the tests to be unidimensional. For a test to be 

unidimensional, the variance in the responses of examinees to the test items should be accounted for 

by a single latent trait (Hambleton et al., 1991). To check this assumption, scree plots of the test data in 

all three grade levels were investigated separately. The plots obtained through principal component 

analysis are given in Figure 1. The plots clearly indicate that the test data in all three grades can be 

considered as unidimensional. 
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Figure 1. Scree plots for the 6th, 7th and 8th grades test data. 
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The second important requirement for the vertical scaling analyses is the psychometric quality 

of the anchor items. Anchor items should have relatively high discrimination value and middle-range 

difficulty, and they should not function differentially between the grade levels. (Kim et al., 2009). 

Biserial correlations of the anchor items in this study ranged between 0.48 and 0.57, and the 

proportion correct values ranged between 0.39 and 0.61. These statistics indicated that anchor items 

had appropriate discrimination and difficulty values. However, there was a problem on the DIF side. 

Differential item functioning (DIF) analyses in this study were conducted with the built-in DIF model 

in the program BILOG-MG. 

Unexpectedly, 2 of the 6 anchor items between the 6th and 7th grades, and 4 of the 6 anchor 

items between the 6th and 7th grades were detected as functioning differentially between the 

corresponding grade levels. Thus, the detected items were not used as anchor items, leaving only 4 

anchor items between the 6th and 7th grade levels and 2 anchor items between the 7th and 8th grade 

levels. However, these detected items were not excluded from the single grade level analyses in which 

scale scores of students of a certain grade level were estimated using only the test data of that grade 

level. 

Fixed Estimation versus Simultaneous Estimation 

Figure 2 presents the distribution of estimated scale scores for the fixed and the simultaneous 

estimation procedures using the 2-parameter IRT model. For each of the procedures, scale scores were 

estimated three times using the three scale score estimation methods (i.e., ML, EAP and MAP). 

Graphs in Figure 2 are the smoothed density estimates of the histograms of the scale scores 

obtained in the analyses (Bowman & Azzalini, 1997). The graphs were obtained using the software 

system R (Crawley, 2007). 
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Fix.: Fixed estimation; Sml.: Simultaneous estimation; ML: Maximum likelihood; EAP: Expected a posteriori; 

MAP: Maximum a posteriori; M: Mean of scale scores; S: Standard deviation of scale scores; R: Reliability of 

scale scores; 

                 : 6th grades,                       : 7th grades,                     : 8th grades. 

Figure 2. Distributions of scale score estimates for the fixed and simultaneous estimation methods 

using the 2-parameter IRT model. 

Both in the fixed and the simultaneous estimations the mean and the standard deviation of the 

6th grade population were determined to be 0 and 1, respectively. However, one should notice that 

these are the population parameters; thus the estimated mean and standard deviation values are not 

exactly 0 and 1 due to the estimation error, yet very close to these values. 

Figure 3 presents the same graphs as Figure 2 but which were obtained using the 3-parameter 

IRT model. 
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Fix: Fixed estimation; Sml.: Simultaneous estimation; ML: Maximum likelihood; EAP: Expected a posteriori; MAP: 

Maximum a posteriori; M: Mean of scale scores; S: Standard deviation of scale scores; R: Reliability of scale scores; 

                  : 6th grades,                       : 7th grades,                     : 8th grades. 

Figure 3. Distributions of scale score estimates for the fixed and simultaneous estimation methods 

using the 3-parameter IRT model. 

The results given in Figure 2 and Figure 3 showed that, both for the 2-parameter and the 3-

parameter IRT models, fixed estimation procedure did not reflect a possible increase in the 8th grade 

average scale score as compared to that of the 7th grade. This is possibly due to the fact that only 2 

anchor items were used between the 7th and 8th grade test forms. In addition, the average score gain 

between the 6th and 7th grades in all the analyses obtained through the fixed estimation procedure was 

considerably lower than the gain obtained through the simultaneous estimation procedure. Thus, one 

may conclude that the fixed estimation procedure is an insufficient way in vertical equating with a 

small number of anchor items. To this reason, investigating the results with respect to the second 

evaluation criterion was conducted only for the simultaneous estimation procedure.  

As stated before, second evaluation criterion based on the comparison of the pairs of scale 

score estimates of the same group; one obtained from the single group, and the other from the 

simultaneous analyses. Single group analyses were those that used only the test data of the group 

under investigation. In single group analyses the mean and the standard deviation of the score 

estimates of the group under investigation was determined to be 0 and 1, respectively. Simultaneous 

analyses were exactly the same as given above in Figure 2 and Figure 3.  
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Figure 4 presents 6 pairs of scale score distributions for the 7th grades obtained through the 2-

parameter and the 3-parameter IRT models for each of the 3 scale score estimation methods.  

 

 
ML: Maximum likelihood; EAP: Expected a posteriori; MAP: Maximum a posteriori; M: Mean of scale scores; S: 

Standart deviation of scale scores; R: Reliability of scale scores; 2Par: 2-parameter model; 3Par: 3-parameter model; 

Sng.: Single group estimation; Sml.: Simultaneous estimation. 

                  : Scores from single group estimation,                  : Scores from simultaneous estimation      

Figure 4. Distributions of scale score estimates for the 7th grade level. 

With respect to the second evaluation criterion, to claim that the simultaneous estimation 

procedure for vertical scaling produces comparable test scores, the pairs of scale score distributions 

given in Figure 4 should be similar up to a linear transformation. That is, the distributions should 

coincide when one the distributions is linearly transferred to have the same mean and standard 

deviation values as the other one.  

In line with this manner, the p-values given on the graphs can be interpreted as the degree of 

overlap between the two distributions after the first one is linearly transferred to have the same mean 

and variance as the second distribution. The values were obtained through the software R (Bowman & 

Azzalini, 1997; Crawley, 2007).  

Similarly, Figure 5 presents the results at the 8th grade level. With respect to the results one 

should notice that the EAP estimates of the scale scores obtained through the 3-parameter IRT model 

produced relatively small amount of overlap between the corresponding pairs of distributions both at 

the 7th and at the 8th grades. 
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         MAP - 3Par 

 Sng.           Sml. 

M 0.066 0.430 

S 0.875 0.789 

R 0.927 0.928 

 

 

 

p-value: 

0.99 

p-value: 

0.99 

p-value: 

0.99 

p-value: 

0.99 
p-value: 

0.09 

p-value: 

0.97 
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ML: Maximum likelihood; EAP: Expected a posteriori; MAP: Maximum a posteriori; M: Mean of scale scores; S: 

Standart deviation of scale scores; R: Reliability of scale scores; 2Par: 2-parameter model; 3Par: 3-parameter model; 

Sng.: Single group estimation; Sml.: Simultaneous estimation. 

                  : Scores from single group estimation,                  : Scores from simultaneous estimation      

Figure 5. Distributions of scale score estimates for the 8th grade level. 

 

 

 

 

 

 

 

 

 

 

 
         ML - 2Par 

 Sng.           Sml. 

M 0.005 0.600 

S 1.056 1.334 

R 0.943 0.944 

 

 

 

 

 
         EAP - 2Par 

 Sng.           Sml. 

M 0.000 0.593 

S 0.963 1.214 

R 0.921 0.923 

 

 

 

 

 
         MAP - 2Par 

 Sng.           Sml. 

M -0.033 0.551 

S 0.918 1.159 

R 0.935 0.936 

 

 

 

 

 
         ML - 3Par 

 Sng.           Sml. 

M 0.040 0.510 

S 1.008 1.130 

R 0.950 0.953 

 

 

 

 

 
         EAP - 3Par 

 Sng.           Sml. 

M -0.001 0.462 

S 0.966 1.105 

R 0.921 0.919 

 

 

 

 

 
         MAP - 3Par 

 Sng.           Sml. 

M 0.062 0.543 

S 0.863 0.962 

R 0.941 0.943 

 

 

 

 

p-value: 

0.99 

p-value: 

0.99 
p-value: 

0.99 

p-value: 

0.96 
p-value: 

0.10 
p-value: 

0.99 
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Discussion and Conclusion 

Vertical scaling presented in this current study belongs to a general family of the equating 

methods known as Nonequivalent Groups Anchor Test (NEAT) design. There is a set of criteria to be 

met for a NEAT design equating to be successful (Angoff, 1984; Lord, 1980). 

With respect to these criteria the tests to be equated should measure the same construct 

(validity), the same measurement model should fit the data in all groups (invariance), equation that 

maps test score X on test A to test score Y on test B should also map score Y on test B to score X on test 

A (symmetry), and it should not matter to a student which test to take (equity). Arguments in the 

psychometrical literature indicate that latent variable models are better in meeting these criteria (van 

der Linden, 2000; Maris, Schmittmann, & Borsboom, 2010). Because of this, the vertical scaling in this 

study was conducted by the 2-parameter and the 3-parameter IRT models. In addition, the software 

BILOG-MG used in this study provides an opportunity to define separate parameters (i.e., mean and 

standard deviation) for each group so that the existence of group differences can be accounted for. 

Otherwise, the simultaneous estimation method used in this study would not be realized. 

The results of this study revealed that the number of anchor items might be an important 

factor in vertical scaling through the fixed estimation method. The increase on the average group scale 

scores obtained in the fixed estimation between the grades 6 and 7 was almost as half as the increase 

obtained in the simultaneous estimation. There were 4 anchor items between the tests at these grade 

levels. Besides, when the number of anchor items happened to drop to 2 between the grades 7 and 8, 

no increase between these grade levels was observed in the fixed estimation as opposed to the 

simultaneous estimation. However, the simultaneous estimation method managed to reflect a possible 

increase in the group means with as few as 2 items which is in line with the finding of Vale (1986). 

Thus, this might be interpreted as, especially with the modest number of anchor items, the 

simultaneous estimation procedure should be preferred to the fixed estimation method. 

However, in some cases it may not be possible to use the simultaneous estimation due to 

some practical constraints of the test conditions. For example, test data from all the group levels may 

not be ready at the same time, and consequently, the analyses may be conducted only with the 

available data. Then, if one wants to analyze the rest of the data at the same metric scale of the first 

calibration phase, the fixed estimation method is to be used. Therefore, renewing this current study 

with an increased number of anchor items would be an important supplement to this study, which 

may reveal some information on the number of anchor items required for a reasonable scaling in the 

fixed estimation process. 

When the results of the simultaneous estimation are further investigated, it is clear that the 

vertically scaled EAP ability estimates with the 3-parameter IRT model should be used with caution. 

As mentioned before, EAP estimates use the observed response pattern as a condition to the 

conditional posterior distribution of ability. In addition the 3-parameter IRT model takes into 

consideration the guessing effect (Hambleton et al., 1991). The results of this study showed that this 

combination had somehow deteriorating effect on the vertical scaling results. Some further theoretical 

research on this issue may clarify the causes for this effect. 

In sum, the NEAT design is a very challenging issue in the psychometric literature that there 

are researchers who suggest avoiding it whenever possible (eg., Maris et al., 2010). However, in the 

large scale tests which aim to monitor the development across the grade levels using a NEAT design 

seems to be inevitable. The results of this current study showed that in such test occasions, the 

simultaneous estimation procedure with the 2-parameter and the 3-parameter IRT models would be a 

reasonable choice, even with a few anchor items.  
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